Skip to content

Conversation

@marcoeilers
Copy link
Contributor

Addressing issue #291.

With this PR, for predicate P(x: Ref, i: Int), we generate

function  P(x: Ref, i: int): Field PredicateType_P FrameType;
function  P#sm(x: Ref, i: int): Field PredicateType_P PMaskType;
function  P_inv_x(p_1: (Field PredicateType_P FrameType)): Ref;
function  P_inv_i(p_1: (Field PredicateType_P FrameType)): int;
function  P_pmask_inv_x(pm: (Field PredicateType_P PMaskType)): Ref;
function  P_pmask_inv_i(pm: (Field PredicateType_P PMaskType)): int;
axiom (forall x: Ref, i: int ::
  { P(x, i) }
  P_inv_x(P(x, i)) == x && P_inv_i(P(x, i)) == i
);
axiom (forall x: Ref, i: int ::
  { P#sm(x, i) }
  P_pmask_inv_x(P#sm(x, i)) == x && P_pmask_inv_i(P#sm(x, i)) == i
);

instead of the current

function  P(x: Ref, i: int): Field PredicateType_P FrameType;
function  P#sm(x: Ref, i: int): Field PredicateType_P PMaskType;
axiom (forall x: Ref, i: int, x2: Ref, i2: int ::
  { P(x, i), P(x2, i2) }
  P(x, i) == P(x2, i2) ==> x == x2 && i == i2
);
axiom (forall x: Ref, i: int, x2: Ref, i2: int ::
  { P#sm(x, i), P#sm(x2, i2) }
  P#sm(x, i) == P#sm(x2, i2) ==> x == x2 && i == i2
);

and thus avoid a quadratic number of quantifier instantiations.

@marcoeilers marcoeilers requested a review from Dev-XYS January 8, 2025 15:10
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants