Skip to content

Commit 8365d62

Browse files
authored
Create index.html
1 parent eec4433 commit 8365d62

File tree

1 file changed

+71
-0
lines changed

1 file changed

+71
-0
lines changed

pages/index.html

+71
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,71 @@
1+
<!DOCTYPE html>
2+
<html lang="en">
3+
<head>
4+
<meta charset="UTF-8">
5+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
6+
<title>Semanticist: PCA-Guided Visual Tokenization</title>
7+
<style>
8+
body {
9+
font-family: Arial, sans-serif;
10+
margin: 40px;
11+
line-height: 1.6;
12+
max-width: 800px;
13+
margin: auto;
14+
}
15+
h1, h2, h3 {
16+
color: #333;
17+
}
18+
a {
19+
color: #007bff;
20+
text-decoration: none;
21+
}
22+
a:hover {
23+
text-decoration: underline;
24+
}
25+
.section {
26+
margin-bottom: 40px;
27+
}
28+
</style>
29+
</head>
30+
<body>
31+
<h1>Semanticist: PCA-Guided Visual Tokenization with Structured Latents</h1>
32+
<h3>A New Paradigm for Compact and Interpretable Image Representations</h3>
33+
<p>
34+
<a href="#">[Read the Paper]</a> &nbsp; | &nbsp;
35+
<a href="#">[GitHub]</a> &nbsp; | &nbsp;
36+
<a href="#">[Colab Demo]</a>
37+
</p>
38+
39+
<div class="section">
40+
<h2>Introduction & Motivation</h2>
41+
<p>Deep generative models have revolutionized image synthesis, but how we tokenize visual data remains an open question. While classical methods like <b>Principal Component Analysis (PCA)</b> introduced compact, structured representations, modern <b>visual tokenizers</b>—from <b>VQ-VAE</b> to <b>latent diffusion models</b>—often prioritize <b>reconstruction fidelity</b> at the cost of interpretability and efficiency.</p>
42+
<h3>The Problem</h3>
43+
<ul>
44+
<li><b>Lack of Structure:</b> Tokens are arbitrarily learned, without an ordering that prioritizes important visual features first.</li>
45+
<li><b>Semantic-Spectrum Coupling:</b> Tokens entangle <i>high-level semantics</i> with <i>low-level spectral details</i>, leading to inefficiencies in downstream applications.</li>
46+
</ul>
47+
<p>Can we design a <b>compact, structured tokenizer</b> that retains the benefits of PCA while leveraging modern generative techniques?</p>
48+
</div>
49+
50+
<div class="section">
51+
<h2>Key Contributions (What’s New?)</h2>
52+
<ul>
53+
<li><b>📌 PCA-Guided Tokenization:</b> Introduces a <i>causal ordering</i> where earlier tokens capture the most important visual details, reducing redundancy.</li>
54+
<li><b>⚡ Semantic-Spectrum Decoupling:</b> Resolves the issue of semantic-spectrum coupling to ensure tokens focus on high-level semantic information.</li>
55+
<li><b>🌀 Diffusion-Based Decoding:</b> Uses a <i>spectral autoregressive diffusion decoder</i> to naturally separate semantic and spectral content.</li>
56+
<li><b>🚀 Compact & Interpretability-Friendly:</b> Enables <i>flexible token selection</i>, where fewer tokens can still yield high-quality reconstructions.</li>
57+
</ul>
58+
</div>
59+
60+
<div class="section">
61+
<h2>Visualizing the Problem: Semantic-Spectrum Coupling</h2>
62+
<p>Existing methods fail to separate <b>semantics from spectral details</b>, leading to inefficiencies in token usage.</p>
63+
<ul>
64+
<li><b>🚨 Current Tokenizers:</b> More tokens simultaneously increase both <i>semantic content</i> and <i>low-level spectral details</i>, making compression inefficient.</li>
65+
<li><b>✅ Our Approach:</b> Tokens capture <i>semantics first</i>, ensuring a <i>coarse-to-fine</i> hierarchical structure.</li>
66+
</ul>
67+
<p><b>📊 Power Spectrum Analysis (Visual)</b><br>➡️ <i>[Insert a figure similar to your spectral analysis plot]</i></p>
68+
<p><b>🖼 Comparison of Reconstructions</b><br>➡️ <i>[Insert a figure comparing VQ-VAE, TiTok, and Semanticist reconstructions at different token levels]</i></p>
69+
</div>
70+
</body>
71+
</html>

0 commit comments

Comments
 (0)