-
Notifications
You must be signed in to change notification settings - Fork 320
/
Copy pathrun.sh
executable file
·81 lines (68 loc) · 3.19 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#!/bin/bash
set -x
export KUBECONFIG=${KUBECONFIG}
export aibrix_repo=${aibrix_repo}
export api_key=${api_key}
export kube_context=${kube_context}
for WORKLOAD_TYPE in "T_HighSlow_I_HighSlow_O_HighFast" "T_HighSlow_I_HighSlow_O_HighSlow" "T_HighSlow_I_LowFast_O_HighSlow" "T_HighSlow_I_LowSlow_O_HighSlow"
do
workload_path="workload/synthetic_patterns/${WORKLOAD_TYPE}/synthetic_manual_config.jsonl"
if [ -z "${workload_path}" ]; then
echo "workload path is not given"
echo "Usage: $0 <workload_path>"
exit 1
fi
autoscalers="hpa kpa apa optimizer-kpa"
for autoscaler in ${autoscalers}; do
start_time=$(date +%s)
echo "--------------------------------"
echo "started experiment at $(date)"
echo autoscaler: ${autoscaler}
echo workload: ${workload_path}
echo "The stdout/stderr is being logged in output-${autoscaler}-${WORKLOAD_TYPE}.txt"
./run-test.sh ${workload_path} ${autoscaler} ${aibrix_repo} ${api_key} ${kube_context} ${WORKLOAD_TYPE} > output-${autoscaler}-${WORKLOAD_TYPE}.txt 2>&1
end_time=$(date +%s)
echo "Done: Time taken: $((end_time-start_time)) seconds"
echo "--------------------------------"
sleep 10
done
python plot-everything.py experiment_results/${WORKLOAD_TYPE} ${WORKLOAD_TYPE}
done
for WORKLOAD_TYPE in "workload-2024-10-10-19-50-00" "workload-2024-10-15-18-50-00"
do
workload_path="workload/maas/${WORKLOAD_TYPE}/internal.jsonl"
if [ -z "${workload_path}" ]; then
echo "workload path is not given"
echo "Usage: $0 <workload_path>"
exit 1
fi
autoscalers="hpa kpa apa optimizer-kpa"
for autoscaler in ${autoscalers}; do
start_time=$(date +%s)
echo "--------------------------------"
echo "started experiment at $(date)"
echo autoscaler: ${autoscaler}
echo workload: ${workload_path}
echo "The stdout/stderr is being logged in output-${WORKLOAD_TYPE}.txt"
./run-test.sh ${workload_path} ${autoscaler} ${aibrix_repo} ${api_key} ${kube_context} ${WORKLOAD_TYPE} > output-${WORKLOAD_TYPE}.txt 2>&1
end_time=$(date +%s)
echo "Done: Time taken: $((end_time-start_time)) seconds"
echo "--------------------------------"
sleep 10
done
python plot-everything.py experiment_results/${WORKLOAD_TYPE} ${WORKLOAD_TYPE}
done
# target_deployment="deepseek-llm-7b-chat"
# kubectl delete podautoscaler --all --all-namespaces
# python3 ${aibrix_repo}/benchmarks/utils/set_num_replicas.py --deployment ${target_deployment} --replicas 1 --context ${kube_context}
# target_ai_model=deepseek-llm-7b-chat
# mkdir -p output-profile
# for qps in {1..10}
# do
# kubectl -n envoy-gateway-system port-forward service/envoy-aibrix-system-aibrix-eg-903790dc 8888:80 &
# STRATEGY="random"
# WORKLOAD_PATH=workload/constant/qps-${qps}/constant.jsonl
# python3 ${aibrix_repo}/benchmarks/client/client.py --workload-path ${WORKLOAD_PATH} --endpoint "http://localhost:8888" --model ${target_ai_model} --api-key ${api_key} --output-file-path output-profile/output-qps${qps}.jsonl
# # python analyze.py output-profile/output-qps${qps}.jsonl
# sleep 30
# done