11#! /bin/bash
22set -x
3- # ./run.sh workload/workload/25min_up_and_down/25min_up_and_down.jsonl
43
5- export KUBECONFIG=~ /.kube/config-vke
6- export aibrix_repo=" /root/aibrix-local "
7- export api_key=" sk-kFJ12nKsFVfVmGpj3QzX65s4RbN2xJqWzPYCjYu7wT3BlbLi "
8- export kube_context=" ccr3aths9g2gqedu8asdg@35122069-kcu0n2lfb7pjdd83330h0 "
4+ export KUBECONFIG=${KUBECONFIG}
5+ export aibrix_repo=${aibrix_repo}
6+ export api_key=${api_key}
7+ export kube_context=${kube_context}
98
109for WORKLOAD_TYPE in " T_HighSlow_I_HighSlow_O_HighFast" " T_HighSlow_I_HighSlow_O_HighSlow" " T_HighSlow_I_LowFast_O_HighSlow" " T_HighSlow_I_LowSlow_O_HighSlow"
1110do
1615 exit 1
1716 fi
1817
18+ autoscalers=" hpa kpa apa optimizer-kpa"
19+ for autoscaler in ${autoscalers} ; do
20+ start_time=$( date +%s)
21+ echo " --------------------------------"
22+ echo " started experiment at $( date) "
23+ echo autoscaler: ${autoscaler}
24+ echo workload: ${workload_path}
25+ echo " The stdout/stderr is being logged in output-${autoscaler} -${WORKLOAD_TYPE} .txt"
26+ ./run-test.sh ${workload_path} ${autoscaler} ${aibrix_repo} ${api_key} ${kube_context} ${WORKLOAD_TYPE} > output-${autoscaler} -${WORKLOAD_TYPE} .txt 2>&1
27+ end_time=$( date +%s)
28+ echo " Done: Time taken: $(( end_time- start_time)) seconds"
29+ echo " --------------------------------"
30+ sleep 10
31+ done
32+ python plot-everything.py experiment_results/${WORKLOAD_TYPE} ${WORKLOAD_TYPE}
33+ done
34+
35+
36+
37+
38+ for WORKLOAD_TYPE in " workload-2024-10-10-19-50-00" " workload-2024-10-15-18-50-00"
39+ do
40+ workload_path=" workload/maas/${WORKLOAD_TYPE} /internal.jsonl"
41+ if [ -z " ${workload_path} " ]; then
42+ echo " workload path is not given"
43+ echo " Usage: $0 <workload_path>"
44+ exit 1
45+ fi
46+
1947 autoscalers=" hpa kpa apa optimizer-kpa"
2048 for autoscaler in ${autoscalers} ; do
2149 start_time=$( date +%s)
3058 echo " --------------------------------"
3159 sleep 10
3260 done
61+ python plot-everything.py experiment_results/${WORKLOAD_TYPE} ${WORKLOAD_TYPE}
3362done
3463
35- # for WORKLOAD_TYPE in "T_HighSlow_I_HighSlow_O_HighFast" "T_HighSlow_I_HighSlow_O_HighSlow" "T_HighSlow_I_LowFast_O_HighSlow" "T_HighSlow_I_LowSlow_O_HighSlow"
64+
65+
66+ # target_deployment="deepseek-llm-7b-chat"
67+ # kubectl delete podautoscaler --all --all-namespaces
68+ # python3 ${aibrix_repo}/benchmarks/utils/set_num_replicas.py --deployment ${target_deployment} --replicas 1 --context ${kube_context}
69+ # target_ai_model=deepseek-llm-7b-chat
70+
71+
72+ # mkdir -p output-profile
73+ # for qps in {1..10}
3674# do
37- # python plot-everything.py experiment_results/${WORKLOAD_TYPE}
38- # done
75+ # kubectl -n envoy-gateway-system port-forward service/envoy-aibrix-system-aibrix-eg-903790dc 8888:80 &
76+ # STRATEGY="random"
77+ # WORKLOAD_PATH=workload/constant/qps-${qps}/constant.jsonl
78+ # python3 ${aibrix_repo}/benchmarks/client/client.py --workload-path ${WORKLOAD_PATH} --endpoint "http://localhost:8888" --model ${target_ai_model} --api-key ${api_key} --output-file-path output-profile/output-qps${qps}.jsonl
79+ # # python analyze.py output-profile/output-qps${qps}.jsonl
80+ # sleep 30
81+ # done
0 commit comments