1
1
#! /bin/bash
2
2
set -x
3
- # ./run.sh workload/workload/25min_up_and_down/25min_up_and_down.jsonl
4
3
5
- export KUBECONFIG=~ /.kube/config-vke
6
- export aibrix_repo=" /root/aibrix-local "
7
- export api_key=" sk-kFJ12nKsFVfVmGpj3QzX65s4RbN2xJqWzPYCjYu7wT3BlbLi "
8
- export kube_context=" ccr3aths9g2gqedu8asdg@35122069-kcu0n2lfb7pjdd83330h0 "
4
+ export KUBECONFIG=${KUBECONFIG}
5
+ export aibrix_repo=${aibrix_repo}
6
+ export api_key=${api_key}
7
+ export kube_context=${kube_context}
9
8
10
9
for WORKLOAD_TYPE in " T_HighSlow_I_HighSlow_O_HighFast" " T_HighSlow_I_HighSlow_O_HighSlow" " T_HighSlow_I_LowFast_O_HighSlow" " T_HighSlow_I_LowSlow_O_HighSlow"
11
10
do
16
15
exit 1
17
16
fi
18
17
18
+ autoscalers=" hpa kpa apa optimizer-kpa"
19
+ for autoscaler in ${autoscalers} ; do
20
+ start_time=$( date +%s)
21
+ echo " --------------------------------"
22
+ echo " started experiment at $( date) "
23
+ echo autoscaler: ${autoscaler}
24
+ echo workload: ${workload_path}
25
+ echo " The stdout/stderr is being logged in output-${autoscaler} -${WORKLOAD_TYPE} .txt"
26
+ ./run-test.sh ${workload_path} ${autoscaler} ${aibrix_repo} ${api_key} ${kube_context} ${WORKLOAD_TYPE} > output-${autoscaler} -${WORKLOAD_TYPE} .txt 2>&1
27
+ end_time=$( date +%s)
28
+ echo " Done: Time taken: $(( end_time- start_time)) seconds"
29
+ echo " --------------------------------"
30
+ sleep 10
31
+ done
32
+ python plot-everything.py experiment_results/${WORKLOAD_TYPE} ${WORKLOAD_TYPE}
33
+ done
34
+
35
+
36
+
37
+
38
+ for WORKLOAD_TYPE in " workload-2024-10-10-19-50-00" " workload-2024-10-15-18-50-00"
39
+ do
40
+ workload_path=" workload/maas/${WORKLOAD_TYPE} /internal.jsonl"
41
+ if [ -z " ${workload_path} " ]; then
42
+ echo " workload path is not given"
43
+ echo " Usage: $0 <workload_path>"
44
+ exit 1
45
+ fi
46
+
19
47
autoscalers=" hpa kpa apa optimizer-kpa"
20
48
for autoscaler in ${autoscalers} ; do
21
49
start_time=$( date +%s)
30
58
echo " --------------------------------"
31
59
sleep 10
32
60
done
61
+ python plot-everything.py experiment_results/${WORKLOAD_TYPE} ${WORKLOAD_TYPE}
33
62
done
34
63
35
- # for WORKLOAD_TYPE in "T_HighSlow_I_HighSlow_O_HighFast" "T_HighSlow_I_HighSlow_O_HighSlow" "T_HighSlow_I_LowFast_O_HighSlow" "T_HighSlow_I_LowSlow_O_HighSlow"
64
+
65
+
66
+ # target_deployment="deepseek-llm-7b-chat"
67
+ # kubectl delete podautoscaler --all --all-namespaces
68
+ # python3 ${aibrix_repo}/benchmarks/utils/set_num_replicas.py --deployment ${target_deployment} --replicas 1 --context ${kube_context}
69
+ # target_ai_model=deepseek-llm-7b-chat
70
+
71
+
72
+ # mkdir -p output-profile
73
+ # for qps in {1..10}
36
74
# do
37
- # python plot-everything.py experiment_results/${WORKLOAD_TYPE}
38
- # done
75
+ # kubectl -n envoy-gateway-system port-forward service/envoy-aibrix-system-aibrix-eg-903790dc 8888:80 &
76
+ # STRATEGY="random"
77
+ # WORKLOAD_PATH=workload/constant/qps-${qps}/constant.jsonl
78
+ # python3 ${aibrix_repo}/benchmarks/client/client.py --workload-path ${WORKLOAD_PATH} --endpoint "http://localhost:8888" --model ${target_ai_model} --api-key ${api_key} --output-file-path output-profile/output-qps${qps}.jsonl
79
+ # # python analyze.py output-profile/output-qps${qps}.jsonl
80
+ # sleep 30
81
+ # done
0 commit comments