Description
Bug Report
Title: TypeError: missing a required argument: 'input'
during Multi-GPU Quantization of Qwen2.5-VL
using AWQ
.
Description:
While performing multi-GPU quantization using the AWQ
modifier on the Qwen2.5-VL
model, the following error occurs:
TypeError: missing a required argument: 'input'
The error happens when running the custom script for model calibration after setting up the necessary configurations and dataset.
Steps to Reproduce:
-
Download the code from
0619
release. -
Navigate to the
examples/multimodal_vision
directory. -
Install the package using:
pip install -e .
-
Run the custom script provided (as shown below) to start the quantization process.
import base64
from io import BytesIO
import torch
from datasets import load_dataset
from awq.utils.qwen_vl_utils import process_vision_info
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
from llmcompressor.transformers import oneshot
from llmcompressor.utils import dispatch_for_generation
from llmcompressor.modifiers.awq import AWQModifier
# Load model.
model_id = "/Qwen2.5-VL-7B-Instruct/"
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(model_id, torch_dtype="auto")
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
# Oneshot arguments
DATASET_ID = "=/lmms-lab/flickr30k"
DATASET_SPLIT = "test[:512]"
NUM_CALIBRATION_SAMPLES = 16
MAX_SEQUENCE_LENGTH = 2048
# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42)
# Apply chat template and tokenize inputs.
def preprocess_and_tokenize(example):
# preprocess
buffered = BytesIO()
example["image"].save(buffered, format="PNG")
encoded_image = base64.b64encode(buffered.getvalue())
encoded_image_text = encoded_image.decode("utf-8")
base64_qwen = f"data:image;base64,{encoded_image_text}"
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": base64_qwen},
{"type": "text", "text": "What does the image show?"},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
# tokenize
return processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
)
ds = ds.map(preprocess_and_tokenize, remove_columns=ds.column_names)
# Define a oneshot data collator for multimodal inputs.
def data_collator(batch):
assert len(batch) == 1
return {key: torch.tensor(value) for key, value in batch[0].items()}
# Recipe
recipe = [
AWQModifier(
targets=["Linear"],
scheme="W4A16",
group_size=128,
ignore=[
"lm_head",
"re:.*visual.blocks.*mlp.down_proj",
"re:visual.*",
"re:visual.blocks.*",
"re:model.visual.*",
"re:.*cross_attn.*",
],
offload_cache=False
)
]
# Perform oneshot
oneshot(
model=model,
tokenizer=model_id,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
trust_remote_code_model=True,
data_collator=data_collator,
sequential_targets=["Qwen2_5_VLDecoderLayer"],
)
# Confirm generations of the quantized model look sane.
print("========== SAMPLE GENERATION ==============")
dispatch_for_generation(model)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "http://images.cocodataset.org/train2017/000000231895.jpg",
},
{"type": "text", "text": "Please describe the animal in this image\n"},
],
}
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[prompt],
images=image_inputs,
videos=video_inputs,
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
return_tensors="pt",
).to("cuda")
output = model.generate(**inputs, max_new_tokens=100)
print(processor.decode(output[0], skip_special_tokens=True))
print("==========================================")
# Save to disk compressed.
SAVE_DIR = model_id.rstrip("/").split("/")[-1] + "-W4A16-G128"
model.save_pretrained(SAVE_DIR, save_compressed=True)
processor.save_pretrained(SAVE_DIR)
Expected Result:
- The script should execute the quantization of the model on multiple GPUs without errors.
- The model should generate a correct output after quantization.
Actual Result:
-
The following error occurs:
TypeError: missing a required argument: 'input'
This happens during the calibration phase while using the
AWQ
modifier for quantization.
Environment:
-
Operating System: Linux
-
GPU: NVIDIA L40S, 3 GPUs
-
PyTorch Version: (Please provide version if possible)
-
CUDA Version: (Please provide version if possible)
-
Library Versions:
llmcompressor
AWQ
transformers
torch
Logs:
- The full stack trace is provided in the original error message above.
- Here are relevant lines from the logs:
TypeError: missing a required argument: 'input'
...
Possible Cause:
- The error seems to be related to the missing
'input'
argument during the forward pass of a certain layer. This could be due to the specific model layer not receiving the required input or an issue with how the layers are being processed across multiple GPUs.
Suggestions:
- Verify if the layer causing the error is being correctly loaded and if its input data is being passed correctly during multi-GPU execution.
- Check the model’s layer definitions and ensure that all required arguments are being passed when performing multi-GPU quantization.
- Investigate whether this issue occurs due to incorrect use of the
AWQModifier
or its configuration in the multi-GPU setup.