-
Notifications
You must be signed in to change notification settings - Fork 141
/
Copy pathresnet101_pascalvoc_321x321.py
80 lines (67 loc) · 2.25 KB
/
resnet101_pascalvoc_321x321.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from importmagician import import_from
with import_from('./'):
# Data pipeline
from configs.semantic_segmentation.common.datasets.pascal_voc import dataset
from configs.semantic_segmentation.common.datasets.voc_train_321 import train_augmentation
from configs.semantic_segmentation.common.datasets.voc_test_505 import test_augmentation
# Optimization pipeline
from configs.semantic_segmentation.common.optims.celoss import loss
from configs.semantic_segmentation.common.optims.sgd0002 import optimizer
from configs.semantic_segmentation.common.optims.ep30 import lr_scheduler
train = dict(
exp_name='resnet101_fcn_pascalvoc_321x321',
workers=4,
batch_size=8,
checkpoint=None,
# Device args
world_size=0,
dist_url='env://',
device='cuda',
val_num_steps=1000, # validation/checkpointing interval (steps)
save_dir='./checkpoints',
num_epochs=30,
collate_fn=None,
input_size=(321, 321),
original_size=(505, 505),
num_classes=21,
# For selective evaluation (e.g., SYNTHIA selects 13/16 classes from Cityscapes)
eval_classes=21,
selector=None,
# For ENet encoder pre-training
encoder_only=False,
encoder_size=None
)
test = dict(
exp_name='resnet101_fcn_pascalvoc_321x321',
workers=0,
batch_size=1,
checkpoint='./checkpoints/resnet101_fcn_pascalvoc_321x321/model.pt',
# Device args
device='cuda',
save_dir='./checkpoints',
collate_fn=None, # 'dict_collate_fn' for LSTR
original_size=(505, 505),
num_classes=21,
# For selective evaluation (e.g., SYNTHIA selects 13/16 classes from Cityscapes)
eval_classes=21,
selector=None,
# For ENet encoder pre-training
encoder_only=False,
encoder_size=None
)
model = dict(
name='standard_segmentation_model',
pretrained=False, # MSCOCO pre-training, not recommended (not the same COCO pre-training in DeepLab paper)
backbone_cfg=dict(
name='predefined_resnet_backbone',
backbone_name='resnet101',
return_layer='layer4',
pretrained=True, # ImageNet pre-training
replace_stride_with_dilation=[False, True, True]
),
classifier_cfg=dict(
name='FCNHead',
in_channels=2048,
num_classes=21
)
)