You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: vortex-filtering/include/vortex_filtering/filters/README.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -273,7 +273,7 @@ The perceived measurements. This parameter consists of an Eigen vector. It shoul
273
273
This will be a short description of what is happening inside the step function. For a more clear and specific explanation of the steps of the PDAF please look into the recommended textbooks.
274
274
* The step function will first use the dynamic model to calculate the next state (only considering the given model). Then the sensor model is used to convert the predicted state into the measurement space. That means to get the value, we would measure with our sensor if the perceived state is like the predicted state (of the dynamic model). Concerning our rocket example: We predict the drive temperature with the dynamic model and use the sensor model to convert the drive temperature to the temperature we would measure from the outside.
275
275
Both of those steps are done in one line of code by using the EKF explained earlier.
276
-
* The second step is the gating of the measurements. This is to exclude measurements that are too far away. SO, we can assume that they are definitely clutter, and we won't use them. The **mahalanobis_threshold** parameter is used to define the threshold used for gating. This value will scale the covariance of the predicted state. All measurements inside this will be considered. Additionally,**min_gate_threshold** and **max_gate_threshold** are used here. Since we scale the over-time-changing covariance, we implemented a min and max threshold. If the scaled covariance is too large or too small, we still take measurements in a fixed area into account.
276
+
* The second step is the gating of the measurements. This is to exclude measurements that are too far away. So, we can assume that they are definitely clutter, and we won't use them. The **mahalanobis_threshold** parameter is used to define the threshold used for gating. This value will scale the covariance of the predicted state. All measurements inside this will be considered. Additionally,**min_gate_threshold** and **max_gate_threshold** are used here. Since we scale the over-time-changing covariance, we implemented a min and max threshold. If the scaled covariance is too large or too small, we still take measurements in a fixed area into account.
277
277
* The next step is the update states step. All measurements inside the gate will be compared to the predicted state estimate (by the dynamic model). This results in a Gaussian distribution for all of these measurements.
278
278
* In the last step, the weighted average of estimated Gaussian distributions will be calculated. This weighted average will be the final output of the PDAF and is considered to be the current state estimate. Therefore, it will be the previous state estimate in the next iteration.
0 commit comments