-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.py
321 lines (281 loc) · 13.3 KB
/
index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
from sklearn.ensemble import RandomForestClassifier
import pandas as pd
from Bio.SeqUtils.ProtParam import ProteinAnalysis
import random
from random import randint
import numpy as np
from sklearn.neural_network import MLPClassifier
from sklearn import svm
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import BernoulliNB
from sklearn.metrics import roc_auc_score
from imblearn.ensemble import EasyEnsemble
from imblearn.combine import SMOTEENN
from imblearn.over_sampling import ADASYN
from imblearn.under_sampling import RandomUnderSampler
from sklearn.ensemble import GradientBoostingClassifier
from imblearn.combine import SMOTETomek
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
import matplotlib.pyplot as plt
print("I am running")
def windower(sequence, position, wing_size):
# window size = wing_size*2 +1
position = int(position)
wing_size = int(wing_size)
if (position - wing_size) < 0:
return sequence[:wing_size + position]
if (position + wing_size) > len(sequence):
return sequence[position - wing_size:]
else:
return sequence[position - wing_size:position + wing_size]
def test_suite(aa ):
pass
def featurify(temp_window, size):
# assumes temp_window = ProteinAnalysis(seq)
q = [temp_window.gravy(),
temp_window.aromaticity(),
temp_window.isoelectric_point()
]
z = temp_window.amino_acids_content
order = {}
counter = 0
aa = "GALMFWKQESPVICYHRNDT"
for i in range(len(aa)):
order[aa[i]] = i
counter +=1
if len(temp_window.sequence) == size:
for i in temp_window.sequence:
q.append(order[i])
else:
for i in temp_window.sequence:
q.append(order[i])
for i in range(size - len(temp_window.sequence)):
q.append(-1)
return q
def random_seq(locked, wing_size, center):
amino_acids = "GALMFWKQESPVICYHRNDT"
t1, t2 = "", ""
for i in range(wing_size):
t1 += amino_acids[randint(0, 19)]
t2 += amino_acids[randint(0, 19)]
final_seq = t1 + center + t2
if final_seq not in locked:
return final_seq
else:
random_seq(locked, wing_size, center)
def report(results, answers, classy,shift=0):
tp, fp, fn, tn = 0, 0, 0, 0
for i in range(len(results)):
if results[i] == 1 and answers[i+shift] == 1:
tp += 1
elif results[i] == 0 and answers[i+shift] == 0:
tn += 1
elif results[i] == 1 and answers[i+shift] == 0:
fp += 1
else:
fn += 1
if tp != 0 and tn != 0:
tpr = tp / (tp + fn) # aka recall aka true positive rate
spc = tn / (tn+fp) # specificty or true negative rate
ppv = tp / (tp + fp) # positive predicative value aka precision
npv = tn/(tn+fn) # negative predictive value
fpr = fp/(fp+tn) # false positive rate aka fallout
fnr = fn/(tp+fn) # false negative rate
fdr = fp/(tp+fp) # false discovery rate
acc = (tp + tn) / (tp + fp + tn + fn)
roc = roc_auc_score(answers, results)
inf = (tpr+spc)-1
mkd = (ppv+npv)-1
print("Sensitivity:"+str(tpr))
print("Specificity :" + str(spc))
print("Positive Predictive Value:" + str(ppv))
print("Negative Predictive Value:" + str(npv))
print("False Positive Rate:" + str(fpr))
print("False Negative Rate:" + str(fnr))
print("False Discovery Rate:" + str(fdr))
print("Accuracy:" + str(acc))
print("ROC:" + str(roc))
print("\n\n")
return [tpr, spc, ppv, npv, fpr, fnr, fdr, acc, inf, mkd]
else:
print("Failed")
return False
class Classy:
def __init__(self, data="phosphosites.csv", delimit=",", amino_acid="Y", sites="code",
modification="phosphorylation", window_size=7, pos="position", training_ratio=.7,
header_line=0, seq="sequence", neg_per_seq=5, lines_to_read=10000, classy="forest", imba=[]):
self.classy = classy
data = pd.read_csv(data, header=header_line, delimiter=delimit, quoting=3, dtype=object)
self.data = data.reindex(np.random.permutation(data.index))
self.amino_acid = amino_acid
self.training_ratio = training_ratio # Float value representing % of data used for training
self.proteins = {}
self.neg_count = 0
self.neg_per_seq = neg_per_seq
self.window = int(window_size)
self.features= []
self.labels = []
self.pos_features = []
self.neg_features = []
self.pos_seq = []
self.imba = imba
self.classif = {"forest": RandomForestClassifier(verbose=0, n_jobs=4),
"mlp_adam": MLPClassifier(solver='adam', random_state=1, activation="logistic"),
"svc": svm.SVC(), "l_svc": svm.LinearSVC(),
"p_svc":svm.SVC(kernel="poly"),"r_svc":svm.SVC(kernel="rbf"),
"mlp_sgd": MLPClassifier(solver='sgd', random_state=1),
"mlp_lbfgs": MLPClassifier(solver='lbfgs', random_state=1),
"bag":BaggingClassifier(),
"ada":AdaBoostClassifier(svm.SVC(), algorithm="SAMME", n_estimators=200),
"sgd":GradientBoostingClassifier(),
"knn":KNeighborsClassifier(n_neighbors=1),
"passive_aggro": PassiveAggressiveClassifier(),"extra": ExtraTreesClassifier(),
"desc_tree": DecisionTreeClassifier(),"nb":GaussianNB(),"bnb":BernoulliNB(),
"nu_svc":svm.NuSVC(), "svr":svm.SVR(),"one_svm":svm.OneClassSVM(), "gb":GradientBoostingClassifier()}
counter = 0
for i in range(len(data)):
try:
if ("X" not in data[seq][i]) and (data[sites][i] == amino_acid) and (data[seq][i] not in self.proteins.keys()):
self.proteins[data[seq][i]] = [data[pos][i]]
elif ("X" not in data[seq][i]) and (data[sites][i] == amino_acid) and (data[pos][i] not in self.proteins[data[seq][i]]):
self.proteins[data[seq][i]].append(data[pos][i])
counter += 1
except:
pass
for i in self.proteins.keys():
neg_sites = []
for position in self.proteins[i]:
try:
temp_window = ProteinAnalysis(windower(i, position, self.window))
self.pos_seq.append(windower(i, position, self.window))
self.pos_features.append(featurify(temp_window, (2*self.window+1)))
except:
pass
for amino_acid_sites in range(len(i)):
# creates list of potential negative sites from the current sequence
if i[amino_acid_sites] == self.amino_acid and amino_acid_sites not in self.proteins[i]:
neg_sites.append(amino_acid_sites)
counter = 0
neg_sites_used = []
while (counter < self.neg_per_seq) and (len(neg_sites_used) != len(neg_sites)):
temp_negative = randint(0, len(neg_sites))
if temp_negative not in neg_sites_used:
try:
temp_window = ProteinAnalysis(windower(i, temp_negative, self.window))
counter += 1
self.neg_features.append(featurify(temp_window, (2*self.window+1)))
self.neg_count +=1
except:
pass
def generate_data(self, random_=1, random_ratio=2, random_test=0):
imb_fun = {"smote":SMOTEENN(), "under":RandomUnderSampler(), "adasyn":ADASYN(), "ee":EasyEnsemble(), "smotetomek":SMOTETomek()}
rand_features = []
neg_labels = [0 for i in range(len(self.neg_features))]
pos_labels = [1 for i in range(len(self.pos_features))]
features = self.pos_features + self.neg_features
labels = pos_labels+neg_labels
if self.imba != []:
for i in self.imba:
features, labels = imb_fun[i].fit_sample(features, labels)
if random_ == 1 and random_ratio > 0:
for i in range(int((len(self.pos_features)+len(self.neg_features))*random_ratio)):
rand_features.append(featurify(ProteinAnalysis(random_seq(locked=self.pos_seq, wing_size=self.window, center=self.amino_acid)), (2*self.window+1)))
if random_test == 0:
temp = list(zip(features, labels))
random.shuffle(temp)
features, labels = zip(*temp)
training_slice = int(self.training_ratio * len(labels))
self.training_features = list(features[:training_slice])+rand_features
self.training_labels = list(labels[:training_slice])+[0 for i in range(len(rand_features))]
self.test_features = features[training_slice:]
self.test_labels = labels[training_slice:]
else:
features = features+rand_features
labels = labels+[0 for i in range(len(rand_features))]
temp = list(zip(features, labels))
random.shuffle(temp)
features, labels = zip(*temp)
training_slice = int(self.training_ratio * len(labels))
self.training_features = list(features[:training_slice])
self.training_labels = list(labels[:training_slice])
self.test_features = features[training_slice:]
self.test_labels = labels[training_slice:]
def calculate(self):
#do a if statement type check
t_class = []
if type(self.classy) != list:
self.clf = self.classif[self.classy]
else:
for i in self.classy:
t_class.append((i, self.classif[i]))
self.clf = VotingClassifier(estimators=t_class)
self.clf.fit(self.training_features, self.training_labels)
self.results = self.clf.predict(self.test_features)
#self.rating = precision_recall_fscore_support(self.test_labels, self.results,average="macro")
#print("cross val" + str(cross_val_score(self.clf, self.test_features, self.test_labels, cv=5)))
report(answers=self.test_labels, results=self.results, classy=self.clf)
def test(self, positive_file, negative_file, sequence_position=10):
# for my test files sequence position = 10
test_features = []
test_labels = []
with open(positive_file) as f:
for i in f:
if ">" not in i and i[sequence_position] == self.amino_acid:
temp_window = ProteinAnalysis(windower(i, sequence_position, self.window).strip("\t"))
feat = featurify(temp_window, (2*self.window+1))
test_features.append(feat)
test_labels.append(1)
with open(negative_file) as f:
for i in f:
if ">" not in i and i[sequence_position] == self.amino_acid and "X" not in i and "U" not in i:
temp_window = ProteinAnalysis(windower(i, sequence_position, self.window).strip("\t"))
feat = featurify(temp_window, (2*self.window+1))
test_features.append(feat)
test_labels.append(0)
temp = list(zip(test_features, test_labels))
random.shuffle(temp)
test_features, test_labels = zip(*temp)
test_results = self.clf.predict(test_features)
#print("cross val"+str(cross_val_score(self.clf, test_features, test_labels, cv=5)))
report(results=test_results, answers=test_labels, classy=self.clf)
def predict_seq(self, seq):
possible_positions = []
seq = seq.upper()
for i in "BJOUZ":
if i in seq:
print("Non valid char in sequence" +i)
return -1
for i in range(len(seq)):
if seq[i] == self.amino_acid:
temp = featurify(ProteinAnalysis(windower(seq, i, self.window)), (2*self.window+1))
possible_positions.append([i, self.clf.predict(temp)[0]])
print(str(list(possible_positions)))
def vis(self):
pca = PCA(n_components=2)
lda = LinearDiscriminantAnalysis(n_components=2)
x_np = np.asarray(self.training_features)
y_np = np.asarray(self.training_labels)
#x_lda = lda.fit(x_np, y_np).transform(y_np)
x_pca = pca.fit_transform(x_np)
plt.figure()
colors = ['navy',"darkorange"]
lw = 2
for color, i in zip(colors, [0,1]):
plt.scatter(x_pca[y_np == i, 0], x_pca[y_np == i, 1], color=color, alpha=.5, lw=lw)
plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title('PCA of dataset')
plt.show()
x = Classy(data="phosphosites.csv", amino_acid="S", classy="mlp_adam", window_size=7, neg_per_seq=3,
training_ratio=.9)
x.generate_data(random_ratio=1, random_=0)
print("Benchmark")
x.calculate()
x.test("phos_pos.fasta", "phos_neg.fasta")