-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathw2vImp.py
266 lines (240 loc) · 9.72 KB
/
w2vImp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from random import randint
import numpy as np
import pandas as pd
import random
from gensim.models import word2vec
from sklearn.cluster import KMeans
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
<<<<<<< HEAD
from sklearn.metrics import roc_auc_score
from Bio.SeqUtils.ProtParam import ProteinAnalysis
from sklearn.metrics import precision_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import recall_score
from xgboost import XGBClassifier
=======
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import roc_auc_score
from sklearn.svm import SVC
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from collections import Counter, defaultdict
from sklearn.pipeline import Pipeline
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.metrics import precision_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import recall_score
>>>>>>> origin/master
def windower(sequence, position, wing_size):
# window size = wing_size*2 +1
position = int(position)
wing_size = int(wing_size)
if (position - wing_size) < 0:
return sequence[:wing_size + position]
if (position + wing_size) > len(sequence):
return sequence[position - wing_size:]
else:
return sequence[position - wing_size:position + wing_size]
class DataCleaner:
<<<<<<< HEAD
def __init__(self, output, data="phosphosites.csv", delimit=",", amino_acid="K", window_size=7, training_ratio=.7, header_line=0, neg_per_seq=2):
=======
def __init__(self, output, data="phosphosites.csv", delimit=",", amino_acid="K", sites="code",
modification="phosphorylation", window_size=7, pos="position", training_ratio=.7,
header_line=0, seq="sequence", neg_per_seq=2, lines_to_read=10000):
>>>>>>> origin/master
data = pd.read_csv(data, header=header_line, delimiter=delimit, quoting=3, dtype=object)
self.data = data.reindex(np.random.permutation(data.index))
self.amino_acid = amino_acid
self.training_ratio = training_ratio # Float value representing % of data used for training
self.proteins = {}
self.neg_count = 0
self.neg_per_seq = neg_per_seq
self.window = int(window_size)
self.features= []
self.labels = []
self.output = open(output, "a")
sequences = self.data["sequence"]
positive_sites = self.data["position"]
size = len(self.data["sequence"])
for i in range(0,size):
#print(sequences[i][int(positive_sites[i])-1])
try:
self.features.append(windower(sequences[i], positive_sites[i], self.window))
self.labels.append(1)
except:
print(i)
counter = len(self.features)
for i in range(int(counter*neg_per_seq)):
if len(self.features) >= counter*neg_per_seq:
break
selector = randint(0, size)
options = []
try:
for j in range(len(sequences[selector])):
if sequences[selector][j] == self.amino_acid:
options.append(j)
except:
pass
if len(options) > 0:
try:
random.shuffle(options)
for j in options:
t = windower(sequences[selector],j,self.window)
if t not in self.features:
self.features.append(t)
self.labels.append(0)
except:
pass
temp = list(zip(self.features, self.labels))
random.shuffle(temp)
self.features, self.labels = zip(*temp)
print(len(self.features), len(self.labels))
for i in range(len(self.features)):
t = str(self.features[i])+","+str(self.labels[i])+"\n"
self.output.write(t)
class Classy:
<<<<<<< HEAD
def __init__(self, benchmark="benchmark.csv", data="clean_serine.csv", delimit=",", amino_acid="Y", training_ratio=.7, header_line=0):
=======
def __init__(self, data="clean_serine.csv", delimit=",", amino_acid="Y", training_ratio=.7, header_line=0):
>>>>>>> origin/master
self.data = open(data, "r")
self.amino_acid = amino_acid
self.training_ratio = training_ratio # Float value representing % of data used for training
self.features= []
self.labels = []
i = 0
for line in self.data:
try:
x, y = line.split(",")
y = int(y.strip("\n"))
t = []
for j in x:
t.append(j)
self.features.append(t)
self.labels.append(y)
except:
print("Bad data at line"+str(i))
i = i + 1
temp = list(zip(self.features, self.labels))
random.shuffle(temp)
self.features, self.labels = zip(*temp)
<<<<<<< HEAD
self.features = list(self.features)
self.labels = list(self.labels)
benchmark = pd.read_csv(benchmark,header=header_line, delimiter=delimit, quoting=3, dtype=object)
s = benchmark["fasta_seq"]
a = benchmark["modification_residue"]
p = benchmark["modification_region_location"]
for i in range(len(a)):
if a[i] == self.amino_acid:
self.features.append(s[i])
self.labels.append(1)
self.num_features = 200 # Word vector dimensionality
=======
self.num_features = 300 # Word vector dimensionality
>>>>>>> origin/master
self.min_word_count = 1 # Minimum word count
self.num_workers = 4 # Number of threads to run in parallel
self.context = 5 # Context window size
self.downsampling = 5e-1 # Downsample setting for frequent words
self.model = word2vec.Word2Vec(self.features ,workers=self.num_workers, size=self.num_features, min_count=self.min_word_count,window=self.context, sample=self.downsampling)
def kluster(self):
word_vectors = self.model.wv.syn0
<<<<<<< HEAD
num_clusters = 15
=======
num_clusters = 15 # og is 4
>>>>>>> origin/master
print(num_clusters)
kmeans_clustering = KMeans(n_clusters=num_clusters)
idx = kmeans_clustering.fit_predict(word_vectors)
word_centroid_map = dict(zip(self.model.wv.index2word, idx))
for cluster in range(0, 10):
print("Cluster" +str(cluster))
words = []
val = list(word_centroid_map.values())
key = list(word_centroid_map.keys())
for i in range(len(val)):
if val[i] == cluster:
words.append(key[i])
print(words)
train_centroids = np.zeros((len(self.features), num_clusters),dtype="float32")
counter = 0
for sequence in self.features:
train_centroids[counter] = bag_of_centroids(sequence, word_centroid_map)
counter += 1
<<<<<<< HEAD
self.features = list(self.features)
self.labels = list(self.labels)
print(len(train_centroids),len(self.features))
t1 = train_centroids
for i in range(len(self.features)):
try:
seq = "".join(self.features[i])
t = ProteinAnalysis(seq).gravy()
np.append(t1[i], t)
except:
pass
train_centroids = t1
s = len(train_centroids)
test_centroids = train_centroids[int(.9*s):]
self.test_labels = self.labels[int(.9*s):]
train_centroids = train_centroids[:int(.9*s)]
self.labels = self.labels[:int(.9*s)]
X_train, X_test, y_train, y_test = train_test_split(train_centroids, self.labels, test_size = 0.1, random_state = 42)
np.append(X_test, test_centroids, axis=0)
np.append(y_test, self.test_labels, axis=0)
forest = RandomForestClassifier(n_estimators=100)
#forest = XGBClassifier()
forest.fit(X_train, y_train)
result = forest.predict(X_test)
custom_results(y_test, result)
=======
X_train, X_test, y_train, y_test = train_test_split(train_centroids, self.labels, test_size = 0.33, random_state = 42)
forest = RandomForestClassifier(n_estimators=100)
forest.fit(X_train, y_train)
result = forest.predict(X_test)
print(precision_score(y_test, result))
print(recall_score(y_test, result))
print(accuracy_score(y_test, result))
>>>>>>> origin/master
print(roc_auc_score(y_test, result))
def bag_of_centroids(wordlist, word_centroid_map):
num_centroids = max(word_centroid_map.values()) + 1
bag_of_centroids = np.zeros(num_centroids, dtype="float32")
for word in wordlist:
if word in word_centroid_map:
index = word_centroid_map[word]
bag_of_centroids[index] += 1
return bag_of_centroids
<<<<<<< HEAD
def custom_results( true_y, y):
tp = 0
tn = 0
fn = 0
fp = 0
for i in range(len(y)):
if y[i] == true_y[i]:
if true_y[i] == 1:
tp = tp + 1
else:
tn = tn + 1
else:
if y[i] == 1:
fp = fp + 1
else:
fn = fn + 1
recall = tp / (tp + fn)
precision = tp / (tp+fp)
accuracy = (tp + tn) / (tp + fp + tn +fn)
print(precision, accuracy, recall)
#y= DataCleaner(amino_acid="K", data="k_site.csv", output="clean_k.csv")
x= Classy(data="clean_s.csv", amino_acid="S")
=======
y= DataCleaner(amino_acid="K", data="k_site.csv", output="clean_k.csv")
x= Classy(data="clean_k.csv")
>>>>>>> origin/master
x.kluster()