-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrfc1122.txt
6844 lines (4549 loc) · 282 KB
/
rfc1122.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Network Working Group Internet Engineering Task Force
Request for Comments: 1122 R. Braden, Editor
October 1989
Requirements for Internet Hosts -- Communication Layers
Status of This Memo
This RFC is an official specification for the Internet community. It
incorporates by reference, amends, corrects, and supplements the
primary protocol standards documents relating to hosts. Distribution
of this document is unlimited.
Summary
This is one RFC of a pair that defines and discusses the requirements
for Internet host software. This RFC covers the communications
protocol layers: link layer, IP layer, and transport layer; its
companion RFC-1123 covers the application and support protocols.
Table of Contents
1. INTRODUCTION ............................................... 5
1.1 The Internet Architecture .............................. 6
1.1.1 Internet Hosts .................................... 6
1.1.2 Architectural Assumptions ......................... 7
1.1.3 Internet Protocol Suite ........................... 8
1.1.4 Embedded Gateway Code ............................. 10
1.2 General Considerations ................................. 12
1.2.1 Continuing Internet Evolution ..................... 12
1.2.2 Robustness Principle .............................. 12
1.2.3 Error Logging ..................................... 13
1.2.4 Configuration ..................................... 14
1.3 Reading this Document .................................. 15
1.3.1 Organization ...................................... 15
1.3.2 Requirements ...................................... 16
1.3.3 Terminology ....................................... 17
1.4 Acknowledgments ........................................ 20
2. LINK LAYER .................................................. 21
2.1 INTRODUCTION ........................................... 21
Internet Engineering Task Force [Page 1]
RFC1122 INTRODUCTION October 1989
2.2 PROTOCOL WALK-THROUGH .................................. 21
2.3 SPECIFIC ISSUES ........................................ 21
2.3.1 Trailer Protocol Negotiation ...................... 21
2.3.2 Address Resolution Protocol -- ARP ................ 22
2.3.2.1 ARP Cache Validation ......................... 22
2.3.2.2 ARP Packet Queue ............................. 24
2.3.3 Ethernet and IEEE 802 Encapsulation ............... 24
2.4 LINK/INTERNET LAYER INTERFACE .......................... 25
2.5 LINK LAYER REQUIREMENTS SUMMARY ........................ 26
3. INTERNET LAYER PROTOCOLS .................................... 27
3.1 INTRODUCTION ............................................ 27
3.2 PROTOCOL WALK-THROUGH .................................. 29
3.2.1 Internet Protocol -- IP ............................ 29
3.2.1.1 Version Number ............................... 29
3.2.1.2 Checksum ..................................... 29
3.2.1.3 Addressing ................................... 29
3.2.1.4 Fragmentation and Reassembly ................. 32
3.2.1.5 Identification ............................... 32
3.2.1.6 Type-of-Service .............................. 33
3.2.1.7 Time-to-Live ................................. 34
3.2.1.8 Options ...................................... 35
3.2.2 Internet Control Message Protocol -- ICMP .......... 38
3.2.2.1 Destination Unreachable ...................... 39
3.2.2.2 Redirect ..................................... 40
3.2.2.3 Source Quench ................................ 41
3.2.2.4 Time Exceeded ................................ 41
3.2.2.5 Parameter Problem ............................ 42
3.2.2.6 Echo Request/Reply ........................... 42
3.2.2.7 Information Request/Reply .................... 43
3.2.2.8 Timestamp and Timestamp Reply ................ 43
3.2.2.9 Address Mask Request/Reply ................... 45
3.2.3 Internet Group Management Protocol IGMP ........... 47
3.3 SPECIFIC ISSUES ........................................ 47
3.3.1 Routing Outbound Datagrams ........................ 47
3.3.1.1 Local/Remote Decision ........................ 47
3.3.1.2 Gateway Selection ............................ 48
3.3.1.3 Route Cache .................................. 49
3.3.1.4 Dead Gateway Detection ....................... 51
3.3.1.5 New Gateway Selection ........................ 55
3.3.1.6 Initialization ............................... 56
3.3.2 Reassembly ........................................ 56
3.3.3 Fragmentation ..................................... 58
3.3.4 Local Multihoming ................................. 60
3.3.4.1 Introduction ................................. 60
3.3.4.2 Multihoming Requirements ..................... 61
3.3.4.3 Choosing a Source Address .................... 64
3.3.5 Source Route Forwarding ........................... 65
Internet Engineering Task Force [Page 2]
RFC1122 INTRODUCTION October 1989
3.3.6 Broadcasts ........................................ 66
3.3.7 IP Multicasting ................................... 67
3.3.8 Error Reporting ................................... 69
3.4 INTERNET/TRANSPORT LAYER INTERFACE ..................... 69
3.5 INTERNET LAYER REQUIREMENTS SUMMARY .................... 72
4. TRANSPORT PROTOCOLS ......................................... 77
4.1 USER DATAGRAM PROTOCOL -- UDP .......................... 77
4.1.1 INTRODUCTION ...................................... 77
4.1.2 PROTOCOL WALK-THROUGH ............................. 77
4.1.3 SPECIFIC ISSUES ................................... 77
4.1.3.1 Ports ........................................ 77
4.1.3.2 IP Options ................................... 77
4.1.3.3 ICMP Messages ................................ 78
4.1.3.4 UDP Checksums ................................ 78
4.1.3.5 UDP Multihoming .............................. 79
4.1.3.6 Invalid Addresses ............................ 79
4.1.4 UDP/APPLICATION LAYER INTERFACE ................... 79
4.1.5 UDP REQUIREMENTS SUMMARY .......................... 80
4.2 TRANSMISSION CONTROL PROTOCOL -- TCP ................... 82
4.2.1 INTRODUCTION ...................................... 82
4.2.2 PROTOCOL WALK-THROUGH ............................. 82
4.2.2.1 Well-Known Ports ............................. 82
4.2.2.2 Use of Push .................................. 82
4.2.2.3 Window Size .................................. 83
4.2.2.4 Urgent Pointer ............................... 84
4.2.2.5 TCP Options .................................. 85
4.2.2.6 Maximum Segment Size Option .................. 85
4.2.2.7 TCP Checksum ................................. 86
4.2.2.8 TCP Connection State Diagram ................. 86
4.2.2.9 Initial Sequence Number Selection ............ 87
4.2.2.10 Simultaneous Open Attempts .................. 87
4.2.2.11 Recovery from Old Duplicate SYN ............. 87
4.2.2.12 RST Segment ................................. 87
4.2.2.13 Closing a Connection ........................ 87
4.2.2.14 Data Communication .......................... 89
4.2.2.15 Retransmission Timeout ...................... 90
4.2.2.16 Managing the Window ......................... 91
4.2.2.17 Probing Zero Windows ........................ 92
4.2.2.18 Passive OPEN Calls .......................... 92
4.2.2.19 Time to Live ................................ 93
4.2.2.20 Event Processing ............................ 93
4.2.2.21 Acknowledging Queued Segments ............... 94
4.2.3 SPECIFIC ISSUES ................................... 95
4.2.3.1 Retransmission Timeout Calculation ........... 95
4.2.3.2 When to Send an ACK Segment .................. 96
4.2.3.3 When to Send a Window Update ................. 97
4.2.3.4 When to Send Data ............................ 98
Internet Engineering Task Force [Page 3]
RFC1122 INTRODUCTION October 1989
4.2.3.5 TCP Connection Failures ...................... 100
4.2.3.6 TCP Keep-Alives .............................. 101
4.2.3.7 TCP Multihoming .............................. 103
4.2.3.8 IP Options ................................... 103
4.2.3.9 ICMP Messages ................................ 103
4.2.3.10 Remote Address Validation ................... 104
4.2.3.11 TCP Traffic Patterns ........................ 104
4.2.3.12 Efficiency .................................. 105
4.2.4 TCP/APPLICATION LAYER INTERFACE ................... 106
4.2.4.1 Asynchronous Reports ......................... 106
4.2.4.2 Type-of-Service .............................. 107
4.2.4.3 Flush Call ................................... 107
4.2.4.4 Multihoming .................................. 108
4.2.5 TCP REQUIREMENT SUMMARY ........................... 108
5. REFERENCES ................................................. 112
Internet Engineering Task Force [Page 4]
RFC1122 INTRODUCTION October 1989
1. INTRODUCTION
This document is one of a pair that defines and discusses the
requirements for host system implementations of the Internet protocol
suite. This RFC covers the communication protocol layers: link
layer, IP layer, and transport layer. Its companion RFC,
"Requirements for Internet Hosts -- Application and Support"
[INTRO:1], covers the application layer protocols. This document
should also be read in conjunction with "Requirements for Internet
Gateways" [INTRO:2].
These documents are intended to provide guidance for vendors,
implementors, and users of Internet communication software. They
represent the consensus of a large body of technical experience and
wisdom, contributed by the members of the Internet research and
vendor communities.
This RFC enumerates standard protocols that a host connected to the
Internet must use, and it incorporates by reference the RFCs and
other documents describing the current specifications for these
protocols. It corrects errors in the referenced documents and adds
additional discussion and guidance for an implementor.
For each protocol, this document also contains an explicit set of
requirements, recommendations, and options. The reader must
understand that the list of requirements in this document is
incomplete by itself; the complete set of requirements for an
Internet host is primarily defined in the standard protocol
specification documents, with the corrections, amendments, and
supplements contained in this RFC.
A good-faith implementation of the protocols that was produced after
careful reading of the RFC's and with some interaction with the
Internet technical community, and that followed good communications
software engineering practices, should differ from the requirements
of this document in only minor ways. Thus, in many cases, the
"requirements" in this RFC are already stated or implied in the
standard protocol documents, so that their inclusion here is, in a
sense, redundant. However, they were included because some past
implementation has made the wrong choice, causing problems of
interoperability, performance, and/or robustness.
This document includes discussion and explanation of many of the
requirements and recommendations. A simple list of requirements
would be dangerous, because:
o Some required features are more important than others, and some
features are optional.
Internet Engineering Task Force [Page 5]
RFC1122 INTRODUCTION October 1989
o There may be valid reasons why particular vendor products that
are designed for restricted contexts might choose to use
different specifications.
However, the specifications of this document must be followed to meet
the general goal of arbitrary host interoperation across the
diversity and complexity of the Internet system. Although most
current implementations fail to meet these requirements in various
ways, some minor and some major, this specification is the ideal
towards which we need to move.
These requirements are based on the current level of Internet
architecture. This document will be updated as required to provide
additional clarifications or to include additional information in
those areas in which specifications are still evolving.
This introductory section begins with a brief overview of the
Internet architecture as it relates to hosts, and then gives some
general advice to host software vendors. Finally, there is some
guidance on reading the rest of the document and some terminology.
1.1 The Internet Architecture
General background and discussion on the Internet architecture and
supporting protocol suite can be found in the DDN Protocol
Handbook [INTRO:3]; for background see for example [INTRO:9],
[INTRO:10], and [INTRO:11]. Reference [INTRO:5] describes the
procedure for obtaining Internet protocol documents, while
[INTRO:6] contains a list of the numbers assigned within Internet
protocols.
1.1.1 Internet Hosts
A host computer, or simply "host," is the ultimate consumer of
communication services. A host generally executes application
programs on behalf of user(s), employing network and/or
Internet communication services in support of this function.
An Internet host corresponds to the concept of an "End-System"
used in the OSI protocol suite [INTRO:13].
An Internet communication system consists of interconnected
packet networks supporting communication among host computers
using the Internet protocols. The networks are interconnected
using packet-switching computers called "gateways" or "IP
routers" by the Internet community, and "Intermediate Systems"
by the OSI world [INTRO:13]. The RFC "Requirements for
Internet Gateways" [INTRO:2] contains the official
specifications for Internet gateways. That RFC together with
Internet Engineering Task Force [Page 6]
RFC1122 INTRODUCTION October 1989
the present document and its companion [INTRO:1] define the
rules for the current realization of the Internet architecture.
Internet hosts span a wide range of size, speed, and function.
They range in size from small microprocessors through
workstations to mainframes and supercomputers. In function,
they range from single-purpose hosts (such as terminal servers)
to full-service hosts that support a variety of online network
services, typically including remote login, file transfer, and
electronic mail.
A host is generally said to be multihomed if it has more than
one interface to the same or to different networks. See
Section 1.1.3 on "Terminology".
1.1.2 Architectural Assumptions
The current Internet architecture is based on a set of
assumptions about the communication system. The assumptions
most relevant to hosts are as follows:
(a) The Internet is a network of networks.
Each host is directly connected to some particular
network(s); its connection to the Internet is only
conceptual. Two hosts on the same network communicate
with each other using the same set of protocols that they
would use to communicate with hosts on distant networks.
(b) Gateways don't keep connection state information.
To improve robustness of the communication system,
gateways are designed to be stateless, forwarding each IP
datagram independently of other datagrams. As a result,
redundant paths can be exploited to provide robust service
in spite of failures of intervening gateways and networks.
All state information required for end-to-end flow control
and reliability is implemented in the hosts, in the
transport layer or in application programs. All
connection control information is thus co-located with the
end points of the communication, so it will be lost only
if an end point fails.
(c) Routing complexity should be in the gateways.
Routing is a complex and difficult problem, and ought to
be performed by the gateways, not the hosts. An important
Internet Engineering Task Force [Page 7]
RFC1122 INTRODUCTION October 1989
objective is to insulate host software from changes caused
by the inevitable evolution of the Internet routing
architecture.
(d) The System must tolerate wide network variation.
A basic objective of the Internet design is to tolerate a
wide range of network characteristics -- e.g., bandwidth,
delay, packet loss, packet reordering, and maximum packet
size. Another objective is robustness against failure of
individual networks, gateways, and hosts, using whatever
bandwidth is still available. Finally, the goal is full
"open system interconnection": an Internet host must be
able to interoperate robustly and effectively with any
other Internet host, across diverse Internet paths.
Sometimes host implementors have designed for less
ambitious goals. For example, the LAN environment is
typically much more benign than the Internet as a whole;
LANs have low packet loss and delay and do not reorder
packets. Some vendors have fielded host implementations
that are adequate for a simple LAN environment, but work
badly for general interoperation. The vendor justifies
such a product as being economical within the restricted
LAN market. However, isolated LANs seldom stay isolated
for long; they are soon gatewayed to each other, to
organization-wide internets, and eventually to the global
Internet system. In the end, neither the customer nor the
vendor is served by incomplete or substandard Internet
host software.
The requirements spelled out in this document are designed
for a full-function Internet host, capable of full
interoperation over an arbitrary Internet path.
1.1.3 Internet Protocol Suite
To communicate using the Internet system, a host must implement
the layered set of protocols comprising the Internet protocol
suite. A host typically must implement at least one protocol
from each layer.
The protocol layers used in the Internet architecture are as
follows [INTRO:4]:
o Application Layer
Internet Engineering Task Force [Page 8]
RFC1122 INTRODUCTION October 1989
The application layer is the top layer of the Internet
protocol suite. The Internet suite does not further
subdivide the application layer, although some of the
Internet application layer protocols do contain some
internal sub-layering. The application layer of the
Internet suite essentially combines the functions of the
top two layers -- Presentation and Application -- of the
OSI reference model.
We distinguish two categories of application layer
protocols: user protocols that provide service directly
to users, and support protocols that provide common system
functions. Requirements for user and support protocols
will be found in the companion RFC [INTRO:1].
The most common Internet user protocols are:
o Telnet (remote login)
o FTP (file transfer)
o SMTP (electronic mail delivery)
There are a number of other standardized user protocols
[INTRO:4] and many private user protocols.
Support protocols, used for host name mapping, booting,
and management, include SNMP, BOOTP, RARP, and the Domain
Name System (DNS) protocols.
o Transport Layer
The transport layer provides end-to-end communication
services for applications. There are two primary
transport layer protocols at present:
o Transmission Control Protocol (TCP)
o User Datagram Protocol (UDP)
TCP is a reliable connection-oriented transport service
that provides end-to-end reliability, resequencing, and
flow control. UDP is a connectionless ("datagram")
transport service.
Other transport protocols have been developed by the
research community, and the set of official Internet
transport protocols may be expanded in the future.
Transport layer protocols are discussed in Chapter 4.
Internet Engineering Task Force [Page 9]
RFC1122 INTRODUCTION October 1989
o Internet Layer
All Internet transport protocols use the Internet Protocol
(IP) to carry data from source host to destination host.
IP is a connectionless or datagram internetwork service,
providing no end-to-end delivery guarantees. Thus, IP
datagrams may arrive at the destination host damaged,
duplicated, out of order, or not at all. The layers above
IP are responsible for reliable delivery service when it
is required. The IP protocol includes provision for
addressing, type-of-service specification, fragmentation
and reassembly, and security information.
The datagram or connectionless nature of the IP protocol
is a fundamental and characteristic feature of the
Internet architecture. Internet IP was the model for the
OSI Connectionless Network Protocol [INTRO:12].
ICMP is a control protocol that is considered to be an
integral part of IP, although it is architecturally
layered upon IP, i.e., it uses IP to carry its data end-
to-end just as a transport protocol like TCP or UDP does.
ICMP provides error reporting, congestion reporting, and
first-hop gateway redirection.
IGMP is an Internet layer protocol used for establishing
dynamic host groups for IP multicasting.
The Internet layer protocols IP, ICMP, and IGMP are
discussed in Chapter 3.
o Link Layer
To communicate on its directly-connected network, a host
must implement the communication protocol used to
interface to that network. We call this a link layer or
media-access layer protocol.
There is a wide variety of link layer protocols,
corresponding to the many different types of networks.
See Chapter 2.
1.1.4 Embedded Gateway Code
Some Internet host software includes embedded gateway
functionality, so that these hosts can forward packets as a
Internet Engineering Task Force [Page 10]
RFC1122 INTRODUCTION October 1989
gateway would, while still performing the application layer
functions of a host.
Such dual-purpose systems must follow the Gateway Requirements
RFC [INTRO:2] with respect to their gateway functions, and
must follow the present document with respect to their host
functions. In all overlapping cases, the two specifications
should be in agreement.
There are varying opinions in the Internet community about
embedded gateway functionality. The main arguments are as
follows:
o Pro: in a local network environment where networking is
informal, or in isolated internets, it may be convenient
and economical to use existing host systems as gateways.
There is also an architectural argument for embedded
gateway functionality: multihoming is much more common
than originally foreseen, and multihoming forces a host to
make routing decisions as if it were a gateway. If the
multihomed host contains an embedded gateway, it will
have full routing knowledge and as a result will be able
to make more optimal routing decisions.
o Con: Gateway algorithms and protocols are still changing,
and they will continue to change as the Internet system
grows larger. Attempting to include a general gateway
function within the host IP layer will force host system
maintainers to track these (more frequent) changes. Also,
a larger pool of gateway implementations will make
coordinating the changes more difficult. Finally, the
complexity of a gateway IP layer is somewhat greater than
that of a host, making the implementation and operation
tasks more complex.
In addition, the style of operation of some hosts is not
appropriate for providing stable and robust gateway
service.
There is considerable merit in both of these viewpoints. One
conclusion can be drawn: an host administrator must have
conscious control over whether or not a given host acts as a
gateway. See Section 3.1 for the detailed requirements.
Internet Engineering Task Force [Page 11]
RFC1122 INTRODUCTION October 1989
1.2 General Considerations
There are two important lessons that vendors of Internet host
software have learned and which a new vendor should consider
seriously.
1.2.1 Continuing Internet Evolution
The enormous growth of the Internet has revealed problems of
management and scaling in a large datagram-based packet
communication system. These problems are being addressed, and
as a result there will be continuing evolution of the
specifications described in this document. These changes will
be carefully planned and controlled, since there is extensive
participation in this planning by the vendors and by the
organizations responsible for operations of the networks.
Development, evolution, and revision are characteristic of
computer network protocols today, and this situation will
persist for some years. A vendor who develops computer
communication software for the Internet protocol suite (or any
other protocol suite!) and then fails to maintain and update
that software for changing specifications is going to leave a
trail of unhappy customers. The Internet is a large
communication network, and the users are in constant contact
through it. Experience has shown that knowledge of
deficiencies in vendor software propagates quickly through the
Internet technical community.
1.2.2 Robustness Principle
At every layer of the protocols, there is a general rule whose
application can lead to enormous benefits in robustness and
interoperability [IP:1]:
"Be liberal in what you accept, and
conservative in what you send"
Software should be written to deal with every conceivable
error, no matter how unlikely; sooner or later a packet will
come in with that particular combination of errors and
attributes, and unless the software is prepared, chaos can
ensue. In general, it is best to assume that the network is
filled with malevolent entities that will send in packets
designed to have the worst possible effect. This assumption
will lead to suitable protective design, although the most
serious problems in the Internet have been caused by
unenvisaged mechanisms triggered by low-probability events;
Internet Engineering Task Force [Page 12]
RFC1122 INTRODUCTION October 1989
mere human malice would never have taken so devious a course!
Adaptability to change must be designed into all levels of
Internet host software. As a simple example, consider a
protocol specification that contains an enumeration of values
for a particular header field -- e.g., a type field, a port
number, or an error code; this enumeration must be assumed to
be incomplete. Thus, if a protocol specification defines four
possible error codes, the software must not break when a fifth
code shows up. An undefined code might be logged (see below),
but it must not cause a failure.
The second part of the principle is almost as important:
software on other hosts may contain deficiencies that make it
unwise to exploit legal but obscure protocol features. It is
unwise to stray far from the obvious and simple, lest untoward
effects result elsewhere. A corollary of this is "watch out
for misbehaving hosts"; host software should be prepared, not
just to survive other misbehaving hosts, but also to cooperate
to limit the amount of disruption such hosts can cause to the
shared communication facility.
1.2.3 Error Logging
The Internet includes a great variety of host and gateway
systems, each implementing many protocols and protocol layers,
and some of these contain bugs and mis-features in their
Internet protocol software. As a result of complexity,
diversity, and distribution of function, the diagnosis of
Internet problems is often very difficult.
Problem diagnosis will be aided if host implementations include
a carefully designed facility for logging erroneous or
"strange" protocol events. It is important to include as much
diagnostic information as possible when an error is logged. In
particular, it is often useful to record the header(s) of a
packet that caused an error. However, care must be taken to
ensure that error logging does not consume prohibitive amounts
of resources or otherwise interfere with the operation of the
host.
There is a tendency for abnormal but harmless protocol events
to overflow error logging files; this can be avoided by using a
"circular" log, or by enabling logging only while diagnosing a
known failure. It may be useful to filter and count duplicate
successive messages. One strategy that seems to work well is:
(1) always count abnormalities and make such counts accessible
through the management protocol (see [INTRO:1]); and (2) allow
Internet Engineering Task Force [Page 13]
RFC1122 INTRODUCTION October 1989
the logging of a great variety of events to be selectively
enabled. For example, it might useful to be able to "log
everything" or to "log everything for host X".
Note that different managements may have differing policies
about the amount of error logging that they want normally
enabled in a host. Some will say, "if it doesn't hurt me, I
don't want to know about it", while others will want to take a
more watchful and aggressive attitude about detecting and
removing protocol abnormalities.
1.2.4 Configuration
It would be ideal if a host implementation of the Internet
protocol suite could be entirely self-configuring. This would
allow the whole suite to be implemented in ROM or cast into
silicon, it would simplify diskless workstations, and it would
be an immense boon to harried LAN administrators as well as
system vendors. We have not reached this ideal; in fact, we
are not even close.
At many points in this document, you will find a requirement
that a parameter be a configurable option. There are several
different reasons behind such requirements. In a few cases,
there is current uncertainty or disagreement about the best
value, and it may be necessary to update the recommended value
in the future. In other cases, the value really depends on
external factors -- e.g., the size of the host and the
distribution of its communication load, or the speeds and
topology of nearby networks -- and self-tuning algorithms are
unavailable and may be insufficient. In some cases,
configurability is needed because of administrative
requirements.
Finally, some configuration options are required to communicate
with obsolete or incorrect implementations of the protocols,
distributed without sources, that unfortunately persist in many
parts of the Internet. To make correct systems coexist with
these faulty systems, administrators often have to "mis-
configure" the correct systems. This problem will correct
itself gradually as the faulty systems are retired, but it
cannot be ignored by vendors.
When we say that a parameter must be configurable, we do not
intend to require that its value be explicitly read from a
configuration file at every boot time. We recommend that
implementors set up a default for each parameter, so a
configuration file is only necessary to override those defaults
Internet Engineering Task Force [Page 14]
RFC1122 INTRODUCTION October 1989
that are inappropriate in a particular installation. Thus, the
configurability requirement is an assurance that it will be
POSSIBLE to override the default when necessary, even in a
binary-only or ROM-based product.
This document requires a particular value for such defaults in
some cases. The choice of default is a sensitive issue when
the configuration item controls the accommodation to existing
faulty systems. If the Internet is to converge successfully to
complete interoperability, the default values built into
implementations must implement the official protocol, not
"mis-configurations" to accommodate faulty implementations.
Although marketing considerations have led some vendors to
choose mis-configuration defaults, we urge vendors to choose
defaults that will conform to the standard.
Finally, we note that a vendor needs to provide adequate
documentation on all configuration parameters, their limits and
effects.
1.3 Reading this Document
1.3.1 Organization
Protocol layering, which is generally used as an organizing
principle in implementing network software, has also been used
to organize this document. In describing the rules, we assume
that an implementation does strictly mirror the layering of the
protocols. Thus, the following three major sections specify
the requirements for the link layer, the internet layer, and
the transport layer, respectively. A companion RFC [INTRO:1]
covers application level software. This layerist organization
was chosen for simplicity and clarity.
However, strict layering is an imperfect model, both for the
protocol suite and for recommended implementation approaches.
Protocols in different layers interact in complex and sometimes
subtle ways, and particular functions often involve multiple
layers. There are many design choices in an implementation,
many of which involve creative "breaking" of strict layering.
Every implementor is urged to read references [INTRO:7] and
[INTRO:8].
This document describes the conceptual service interface
between layers using a functional ("procedure call") notation,
like that used in the TCP specification [TCP:1]. A host
implementation must support the logical information flow
Internet Engineering Task Force [Page 15]
RFC1122 INTRODUCTION October 1989
implied by these calls, but need not literally implement the
calls themselves. For example, many implementations reflect
the coupling between the transport layer and the IP layer by
giving them shared access to common data structures. These
data structures, rather than explicit procedure calls, are then
the agency for passing much of the information that is
required.
In general, each major section of this document is organized
into the following subsections:
(1) Introduction
(2) Protocol Walk-Through -- considers the protocol
specification documents section-by-section, correcting
errors, stating requirements that may be ambiguous or
ill-defined, and providing further clarification or
explanation.
(3) Specific Issues -- discusses protocol design and
implementation issues that were not included in the walk-
through.
(4) Interfaces -- discusses the service interface to the next
higher layer.
(5) Summary -- contains a summary of the requirements of the
section.
Under many of the individual topics in this document, there is
parenthetical material labeled "DISCUSSION" or
"IMPLEMENTATION". This material is intended to give
clarification and explanation of the preceding requirements
text. It also includes some suggestions on possible future
directions or developments. The implementation material
contains suggested approaches that an implementor may want to
consider.
The summary sections are intended to be guides and indexes to
the text, but are necessarily cryptic and incomplete. The
summaries should never be used or referenced separately from
the complete RFC.
1.3.2 Requirements
In this document, the words that are used to define the
significance of each particular requirement are capitalized.
Internet Engineering Task Force [Page 16]
RFC1122 INTRODUCTION October 1989
These words are:
* "MUST"
This word or the adjective "REQUIRED" means that the item
is an absolute requirement of the specification.
* "SHOULD"
This word or the adjective "RECOMMENDED" means that there
may exist valid reasons in particular circumstances to
ignore this item, but the full implications should be
understood and the case carefully weighed before choosing
a different course.
* "MAY"
This word or the adjective "OPTIONAL" means that this item
is truly optional. One vendor may choose to include the
item because a particular marketplace requires it or
because it enhances the product, for example; another
vendor may omit the same item.
An implementation is not compliant if it fails to satisfy one
or more of the MUST requirements for the protocols it
implements. An implementation that satisfies all the MUST and
all the SHOULD requirements for its protocols is said to be
"unconditionally compliant"; one that satisfies all the MUST
requirements but not all the SHOULD requirements for its
protocols is said to be "conditionally compliant".
1.3.3 Terminology
This document uses the following technical terms:
Segment
A segment is the unit of end-to-end transmission in the
TCP protocol. A segment consists of a TCP header followed
by application data. A segment is transmitted by
encapsulation inside an IP datagram.
Message
In this description of the lower-layer protocols, a
message is the unit of transmission in a transport layer
protocol. In particular, a TCP segment is a message. A
message consists of a transport protocol header followed
by application protocol data. To be transmitted end-to-