forked from hieubkset/keras-image-super-resolution
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.py
149 lines (118 loc) · 5 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import time
import datetime
import argparse
from tensorflow.keras.utils import multi_gpu_model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import backend as K
from tensorflow.keras.losses import mean_squared_error, mean_absolute_error
import data
from model import get_generator
from metrics import psnr
from utils import save_params, num_iter_per_epoch
from callbacks import make_tb_callback, make_lr_callback, make_cp_callback
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
def load_model(model, path):
if path is not None:
print("** Load model at: " + path)
model.load_weights(path)
return model
def make_gpu_model(model, n_gpus):
if n_gpus > 1:
gpu_model = multi_gpu_model(model, gpus=n_gpus)
else:
gpu_model = model
return gpu_model
def make_exp_folder(exp_dir, model_name):
folder = os.path.join(exp_dir, model_name + '-' + datetime.datetime.now().strftime("%m-%d-%H:%M"))
if not os.path.exists(folder):
os.makedirs(folder)
return folder
def adaptive_batch_size(n_gpus):
if n_gpus < 3:
batch_size = 16
else:
batch_size = 32
return batch_size
def prepare_model(**params):
model_arc = params['arc']
model = get_generator(model_arc)
if model_arc == 'srfeat' or model_arc == 'srgan':
loss = mean_squared_error
else:
loss = mean_absolute_error
model = load_model(model, params['resume'])
gpu_model = make_gpu_model(model, params['n_gpus'])
optimizer = Adam(lr=params['lr_init'])
gpu_model.compile(optimizer=optimizer, loss=loss, metrics=[psnr])
return model, gpu_model
def train(**params):
print("** Loading training images")
start = time.time()
lr_hr_ds, n_data = data.load_train_dataset(params['lr_dir'], params['hr_dir'], params['ext'], params['batch_size'])
val_lr_hr_ds, n_val_data = data.load_test_dataset(params['val_lr_dir'], params['val_hr_dir'], params['val_ext'],
params['val_batch_size'])
print("Finish loading images in %.2fs" % (time.time() - start))
one_gpu_model, gpu_model = prepare_model(**params)
exp_folder = make_exp_folder(params['exp_dir'], params['arc'])
save_params(exp_folder, **params)
tb_callback = make_tb_callback(exp_folder)
lr_callback = make_lr_callback(params['lr_init'], params['lr_decay'], params['lr_decay_at_steps'])
cp_callback = make_cp_callback(exp_folder, one_gpu_model)
gpu_model.fit(lr_hr_ds, epochs=params['epochs'],
steps_per_epoch=num_iter_per_epoch(n_data, params['batch_size']),
callbacks=[tb_callback, cp_callback, lr_callback],
initial_epoch=params['init_epoch'],
validation_data=val_lr_hr_ds,
validation_steps=n_val_data)
one_gpu_model.save_weights(os.path.join(exp_folder, 'final_model.h5'))
K.clear_session()
def main():
parser = argparse.ArgumentParser(description='Single Image Super-Resolution')
parser.add_argument('--arc', type=str, required=True, help='Model type?')
parser.add_argument('--train', type=str, required=True, help='Path to training data')
parser.add_argument('--train-ext', type=str, required=True, help='Extension of training images')
parser.add_argument('--valid', type=str, required=True, help='Path to validation data')
parser.add_argument('--valid-ext', type=str, required=True, help='Extension of validation images')
parser.add_argument('--resume', type=str, default=None, help='Path to a checkpoint')
parser.add_argument('--init_epoch', type=int, default=0, help="Initial epoch")
parser.add_argument('--cuda', type=str, default=None, help='a list of gpus')
args = parser.parse_args()
if args.cuda is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda
n_gpus = len(args.cuda.split(','))
batch_size = adaptive_batch_size(n_gpus)
else:
print('Training without gpu. It is recommended using at least one gpu.')
n_gpus = 0
batch_size = 8
params = {
'arc': args.arc,
'resume': args.resume,
'init_epoch': args.init_epoch,
'n_gpus': n_gpus,
#
'epochs': 20,
'lr_init': 1e-4,
'lr_decay': 0.5,
'lr_decay_at_steps': [10, 15],
#
'patch_size_lr': 74,
'path_size_hr': 296,
#
'hr_dir': os.path.join(args.train, 'HR'),
'lr_dir': os.path.join(args.train, 'LR'),
'ext': args.train_ext,
'batch_size': batch_size,
#
'val_hr_dir': os.path.join(args.valid, 'HR'),
'val_lr_dir': os.path.join(args.valid, 'LR'),
'val_ext': args.valid_ext,
'val_batch_size': 1,
#
'exp_dir': './exp/',
}
train(**params)
if __name__ == '__main__':
main()
# python pretrain.py --arc=erca --train=../SRFeat/data/train/DIV2K --train-ext=.png --valid=../SRFeat/data/test/Set5 --valid-ext=.png --resume=exp/erca-06-24-21\:05/cp-0014.h5 --init_epoch=14 --cuda=1