-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathssd_mobilenetv1_nhwc.js
284 lines (270 loc) · 11.7 KB
/
ssd_mobilenetv1_nhwc.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
'use strict';
import {buildConstantByNpy, computePadding2DForAutoPad, weightsOrigin} from '../common/utils.js';
// SSD MobileNet V1 model with 'nhwc' layout, trained on the COCO dataset.
export class SsdMobilenetV1Nhwc {
constructor() {
this.context_ = null;
this.deviceType_ = null;
this.model_ = null;
this.builder_ = null;
this.graph_ = null;
this.inputTensor_ = null;
this.boxesTensor_ = null;
this.scoresTensor_ = null;
this.boxesShape_ = [1, 1917, 1, 4];
this.scoresShape_ = [1, 1917, 91];
this.weightsUrl_ = weightsOrigin() +
'/test-data/models/ssd_mobilenetv1_nhwc/weights';
this.inputOptions = {
inputLayout: 'nhwc',
labelUrl: './labels/coco_classes.txt',
margin: [1, 1, 1, 1],
mean: [127.5, 127.5, 127.5],
std: [127.5, 127.5, 127.5],
inputShape: [1, 300, 300, 3],
};
}
async buildConv_(input, nameArray, relu6 = true, options = undefined) {
// nameArray: 0: keyword, 1: indice, 2: weightSuffix, 3: biasSuffix
let prefix = this.weightsUrl_;
let weightSuffix = '_mul_1.npy';
let biasSuffix = `_sub__${nameArray[3]}.npy`;
if (nameArray[0].includes('depthwise')) {
prefix += `/FeatureExtractor_MobilenetV1_MobilenetV1_Conv2d_\
${nameArray[1]}_depthwise_BatchNorm_batchnorm`;
weightSuffix = `_mul__${nameArray[2]}.npy`;
} else if (nameArray[0].includes('pointwise')) {
if (nameArray[0].includes('_')) {
prefix += `/FeatureExtractor_MobilenetV1_Conv2d_13_\
${nameArray[0]}_Conv2d_${nameArray[1]}_BatchNorm_batchnorm`;
} else {
prefix += `/FeatureExtractor_MobilenetV1_MobilenetV1_Conv2d_\
${nameArray[1]}_pointwise_BatchNorm_batchnorm`;
}
} else if (nameArray[0].includes('Class')) {
prefix += `/BoxPredictor_${nameArray[1]}_ClassPredictor`;
weightSuffix = '_Conv2D.npy';
biasSuffix = `_biases_read__${nameArray[3]}.npy`;
} else if (nameArray[0].includes('BoxEncoding')) {
prefix += `/BoxPredictor_${nameArray[1]}_BoxEncodingPredictor`;
weightSuffix = '_Conv2D.npy';
biasSuffix = `_biases_read__${nameArray[3]}.npy`;
} else {
prefix += `/FeatureExtractor_MobilenetV1_MobilenetV1_Conv2d_\
${nameArray[1]}_BatchNorm_batchnorm`;
}
const weightsName = prefix + weightSuffix;
const weights = await buildConstantByNpy(this.builder_, weightsName);
const biasName = prefix + biasSuffix;
const bias = await buildConstantByNpy(this.builder_, biasName);
if (options !== undefined) {
options.inputLayout = 'nhwc';
options.filterLayout = 'ohwi';
} else {
options = {
inputLayout: 'nhwc',
filterLayout: 'ohwi',
};
}
if (nameArray[0].includes('depthwise')) {
options.filterLayout = 'ihwo';
}
options.bias = bias;
const isShapeMethod = typeof input.shape === 'function';
const inputShape = isShapeMethod ? input.shape() : input.shape;
const weightsShape = isShapeMethod ? weights.shape() : weights.shape;
options.padding = computePadding2DForAutoPad(
/* nhwc */[inputShape[1], inputShape[2]],
/* ohwi or ihwo */[weightsShape[1], weightsShape[2]],
options.strides, options.dilations, 'same-upper');
const conv2d = this.builder_.conv2d(input, weights, options);
if (relu6) {
return this.builder_.clamp(conv2d, {minValue: 0, maxValue: 6});
}
return conv2d;
}
async load(contextOptions) {
this.context_ = await navigator.ml.createContext(contextOptions);
this.deviceType_ = contextOptions.deviceType;
this.builder_ = new MLGraphBuilder(this.context_);
const inputDesc = {
dataType: 'float32',
dimensions: this.inputOptions.inputShape,
shape: this.inputOptions.inputShape,
};
const input = this.builder_.input('input', inputDesc);
inputDesc.usage = MLTensorUsage.WRITE;
inputDesc.writable = true;
this.inputTensor_ = await this.context_.createTensor(inputDesc);
this.boxesTensor_ = await this.context_.createTensor({
dataType: 'float32',
dimensions: this.boxesShape_,
shape: this.boxesShape_,
usage: MLTensorUsage.READ,
readable: true,
});
this.scoresTensor_ = await this.context_.createTensor({
dataType: 'float32',
dimensions: this.scoresShape_,
shape: this.scoresShape_,
usage: MLTensorUsage.READ,
readable: true,
});
const strides = [2, 2];
const conv0 = await this.buildConv_(
input, ['', '0', '', '165__cf__168'], true, {strides});
const dwise0 = await this.buildConv_(
conv0, ['depthwise', '1', '161__cf__164', '162__cf__165'],
true, {groups: 32});
const conv1 = await this.buildConv_(
dwise0, ['pointwise', '1', '', '159__cf__162']);
const dwise1 = await this.buildConv_(
conv1, ['depthwise', '2', '155__cf__158', '156__cf__159'],
true, {strides, groups: 64});
const conv2 = await this.buildConv_(
dwise1, ['pointwise', '2', '', '153__cf__156']);
const dwise2 = await this.buildConv_(
conv2, ['depthwise', '3', '149__cf__152', '150__cf__153'],
true, {groups: 128});
const conv3 = await this.buildConv_(
dwise2, ['pointwise', '3', '', '147__cf__150']);
const dwise3 = await this.buildConv_(
conv3, ['depthwise', '4', '143__cf__146', '144__cf__147'],
true, {strides, groups: 128});
const conv4 = await this.buildConv_(
dwise3, ['pointwise', '4', '', '141__cf__144']);
const dwise4 = await this.buildConv_(
conv4, ['depthwise', '5', '137__cf__140', '138__cf__141'],
true, {groups: 256});
const conv5 = await this.buildConv_(
dwise4, ['pointwise', '5', '', '135__cf__138']);
const dwise5 = await this.buildConv_(
conv5, ['depthwise', '6', '131__cf__134', '132__cf__135'],
true, {strides, groups: 256});
const conv6 = await this.buildConv_(
dwise5, ['pointwise', '6', '', '129__cf__132']);
const dwise6 = await this.buildConv_(
conv6, ['depthwise', '7', '125__cf__128', '126__cf__129'],
true, {groups: 512});
const conv7 = await this.buildConv_(
dwise6, ['pointwise', '7', '', '123__cf__126']);
const dwise7 = await this.buildConv_(
conv7, ['depthwise', '8', '119__cf__122', '120__cf__123'],
true, {groups: 512});
const conv8 = await this.buildConv_(
dwise7, ['pointwise', '8', '', '117__cf__120']);
const dwise8 = await this.buildConv_(
conv8, ['depthwise', '9', '113__cf__116', '114__cf__117'],
true, {groups: 512});
const conv9 = await this.buildConv_(
dwise8, ['pointwise', '9', '', '111__cf__114']);
const dwise9 = await this.buildConv_(
conv9, ['depthwise', '10', '107__cf__110', '108__cf__111'],
true, {groups: 512});
const conv10 = await this.buildConv_(
dwise9, ['pointwise', '10', '', '105__cf__108']);
const dwise10 = await this.buildConv_(
conv10, ['depthwise', '11', '101__cf__104', '102__cf__105'],
true, {groups: 512});
const conv11 = await this.buildConv_(
dwise10, ['pointwise', '11', '', '99__cf__102']);
const dwise11 = await this.buildConv_(
conv11, ['depthwise', '12', '95__cf__98', '96__cf__99'],
true, {strides, groups: 512});
const conv12 = await this.buildConv_(
dwise11, ['pointwise', '12', '', '93__cf__96']);
const dwise12 = await this.buildConv_(
conv12, ['depthwise', '13', '89__cf__92', '90__cf__93'],
true, {groups: 1024});
const conv13 = await this.buildConv_(
dwise12, ['pointwise', '13', '', '87__cf__90']);
const conv14 = await this.buildConv_(
conv13, ['pointwise_1', '2_1x1_256', '', '84__cf__87']);
const conv15 = await this.buildConv_(
conv14, ['pointwise_2', '2_3x3_s2_512', '', '81__cf__84'],
true, {strides});
const conv16 = await this.buildConv_(
conv15, ['pointwise_1', '3_1x1_128', '', '78__cf__81']);
const conv17 = await this.buildConv_(
conv16, ['pointwise_2', '3_3x3_s2_256', '', '75__cf__78'],
true, {strides});
const conv18 = await this.buildConv_(
conv17, ['pointwise_1', '4_1x1_128', '', '72__cf__75']);
const conv19 = await this.buildConv_(
conv18, ['pointwise_2', '4_3x3_s2_256', '', '69__cf__72'],
true, {strides});
const conv20 = await this.buildConv_(
conv19, ['pointwise_1', '5_1x1_64', '', '66__cf__69']);
const conv21 = await this.buildConv_(
conv20, ['pointwise_2', '5_3x3_s2_128', '', '63__cf__66'],
true, {strides});
// First concatenation
const conv22 = await this.buildConv_(
conv11, ['BoxEncoding', '0', '', '177__cf__180'], false);
const reshape0 = this.builder_.reshape(conv22, [1, 1083, 1, 4]);
const conv23 = await this.buildConv_(
conv13, ['BoxEncoding', '1', '', '175__cf__178'], false);
const reshape1 = this.builder_.reshape(conv23, [1, 600, 1, 4]);
const conv24 = await this.buildConv_(
conv15, ['BoxEncoding', '2', '', '173__cf__176'], false);
const reshape2 = this.builder_.reshape(conv24, [1, 150, 1, 4]);
const conv25 = await this.buildConv_(
conv17, ['BoxEncoding', '3', '', '171__cf__174'], false);
const reshape3 = this.builder_.reshape(conv25, [1, 54, 1, 4]);
const conv26 = await this.buildConv_(
conv19, ['BoxEncoding', '4', '', '169__cf__172'], false);
const reshape4 = this.builder_.reshape(conv26, [1, 24, 1, 4]);
const conv27 = await this.buildConv_(
conv21, ['BoxEncoding', '5', '', '167__cf__170'], false);
const reshape5 = this.builder_.reshape(conv27, [1, 6, 1, 4]);
// XNNPACK doesn't support concat inputs size > 4.
const concatReshape0123 = this.builder_.concat(
[reshape0, reshape1, reshape2, reshape3], 1);
const concat0 = this.builder_.concat(
[concatReshape0123, reshape4, reshape5], 1);
// Second concatenation
const conv28 = await this.buildConv_(
conv11, ['Class', '0', '', '51__cf__54'], false);
const reshape6 = this.builder_.reshape(conv28, [1, 1083, 91]);
const conv29 = await this.buildConv_(
conv13, ['Class', '1', '', '49__cf__52'], false);
const reshape7 = this.builder_.reshape(conv29, [1, 600, 91]);
const conv30 = await this.buildConv_(
conv15, ['Class', '2', '', '47__cf__50'], false);
const reshape8 = this.builder_.reshape(conv30, [1, 150, 91]);
const conv31 = await this.buildConv_(
conv17, ['Class', '3', '', '45__cf__48'], false);
const reshape9 = this.builder_.reshape(conv31, [1, 54, 91]);
const conv32 = await this.buildConv_(
conv19, ['Class', '4', '', '43__cf__46'], false);
const reshape10 = this.builder_.reshape(conv32, [1, 24, 91]);
const conv33 = await this.buildConv_(
conv21, ['Class', '5', '', '41__cf__44'], false);
const reshape11 = this.builder_.reshape(conv33, [1, 6, 91]);
// XNNPACK doesn't support concat inputs size > 4.
const concatReshape6789 = this.builder_.concat(
[reshape6, reshape7, reshape8, reshape9], 1);
const concat1 = this.builder_.concat(
[concatReshape6789, reshape10, reshape11], 1);
return {'boxes': concat0, 'scores': concat1};
}
async build(outputOperand) {
this.graph_ = await this.builder_.build(outputOperand);
}
async compute(inputBuffer) {
this.context_.writeTensor(this.inputTensor_, inputBuffer);
const inputs = {'input': this.inputTensor_};
const outputs = {
'boxes': this.boxesTensor_,
'scores': this.scoresTensor_,
};
this.context_.dispatch(this.graph_, inputs, outputs);
const results = {
'boxes': new Float32Array(
await this.context_.readTensor(this.boxesTensor_)),
'scores': new Float32Array(
await this.context_.readTensor(this.scoresTensor_)),
};
return results;
}
}