Skip to content

Commit 4f3103b

Browse files
authored
Add NNotepad to README.md (#269)
1 parent 952718d commit 4f3103b

File tree

1 file changed

+3
-0
lines changed

1 file changed

+3
-0
lines changed

README.md

+3
Original file line numberDiff line numberDiff line change
@@ -7,10 +7,12 @@ This repository contains a collection of samples and examples demonstrating Web
77
## Repository Structure
88
This repository hosts a wide range of samples and examples that showcase different use cases and functionalities of WebNN. Here's an overview of the directory structure:
99

10+
* [Code Editor](/code): This is a Code Editor used for evaluating, reviewing and modifying WebNN sample codes interactively in web browser.
1011
* [Face recognition](/face_recognition): This directory contains examples of SSD MobileNet V2 Face and Face Landmark (SimpleCNN) model implementation.
1112
* [Facial landmark detection](/facial_landmark_detection): This directory contains examples of SSD MobileNet V2 Face and Face Landmark (SimpleCNN) model implementation.
1213
* [Image classification](/image_classification): This directory contains examples demonstrating image classification using pre-trained models with WebNN.
1314
* [LeNet](/lenet): This example showcases the LeNet-based handwritten digits classification by WebNN API.
15+
* [NNotepad](/nnotepad): This is a browser-based playground for experimenting with WebNN expressions without boilerplate code.
1416
* [NSNet2](/nsnet2): This example shows how to implement the NSNet2 baseline implementation of a deep learning-based noise suppression model.
1517
* [Object detection](/object_detection): Samples showcasing object detection tasks using WebNN with pre-trained models.
1618
* [RNNoise](/rnnoise): This example shows the RNNoise baseline implementation of a deep learning-based noise suppression model.
@@ -63,6 +65,7 @@ To learn more about Web Neural Network API (WebNN) and its capabilities, check o
6365

6466
### WebNN API Samples
6567
* [WebNN code editor](https://webmachinelearning.github.io/webnn-samples/code/)
68+
* [NNotepad](https://webmachinelearning.github.io/webnn-samples/nnotepad/)
6669
* [Handwritten digits classification](https://webmachinelearning.github.io/webnn-samples/lenet/)
6770
* Noise suppression:
6871
* [NSNet2](https://webmachinelearning.github.io/webnn-samples/nsnet2/)

0 commit comments

Comments
 (0)