-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheck_weights.py
36 lines (30 loc) · 1.27 KB
/
check_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import json
import torch
from safetensors.torch import load_file # 导入 safetensors 库
def build_nested_dict(weights):
"""
构建一个嵌套字典以反映权重的层级结构
:param weights: 加载的权重
:return: 嵌套字典
"""
nested_dict = {}
for key, value in weights.items():
parts = key.split('.')
d = nested_dict
for part in parts[:-1]:
d = d.setdefault(part, {})
# 仅存储张量的形状
d[parts[-1]] = list(value.size()) if isinstance(value, torch.Tensor) else value
return nested_dict
# 读取权重
weights_path = '/home/stone/team/user/stone/models/custom-diff/1-26-2.8w/checkpoint-40000/pytorch_custom_diffusion_weights.safetensors'
# "/home/stone/.cache/modelscope/hub/damo/cv_anytext_text_generation_editing/anytext_v1.1.ckpt"
# weights = torch.load(weights_path, map_location='cpu')
weights = load_file(weights_path) # 使用 safetensors 加载权重
# 构建层级结构的字典
nested_weights = build_nested_dict(weights)
# 将结果按原结构存为 json
output_json_path = "/home/stone/nas/AnyText/ckpt_format/pytorch_custom_diffusion_weights.json"
with open(output_json_path, 'w') as json_file:
json.dump(nested_weights, json_file, indent=4)
# ... existing code ...