-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathfilters.py
655 lines (538 loc) · 23.3 KB
/
filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
import tensorflow as tf
import numpy as np
import tensorflow.contrib.layers as ly
from util_filters import lrelu, rgb2lum, tanh_range, lerp
import cv2
import math
class Filter:
def __init__(self, net, cfg):
self.cfg = cfg
# self.height, self.width, self.channels = list(map(int, net.get_shape()[1:]))
# Specified in child classes
self.num_filter_parameters = None
self.short_name = None
self.filter_parameters = None
def get_short_name(self):
assert self.short_name
return self.short_name
def get_num_filter_parameters(self):
assert self.num_filter_parameters
return self.num_filter_parameters
def get_begin_filter_parameter(self):
return self.begin_filter_parameter
def extract_parameters(self, features):
# output_dim = self.get_num_filter_parameters(
# ) + self.get_num_mask_parameters()
# features = ly.fully_connected(
# features,
# self.cfg.fc1_size,
# scope='fc1',
# activation_fn=lrelu,
# weights_initializer=tf.contrib.layers.xavier_initializer())
# features = ly.fully_connected(
# features,
# output_dim,
# scope='fc2',
# activation_fn=None,
# weights_initializer=tf.contrib.layers.xavier_initializer())
return features[:, self.get_begin_filter_parameter():(self.get_begin_filter_parameter() + self.get_num_filter_parameters())], \
features[:, self.get_begin_filter_parameter():(self.get_begin_filter_parameter() + self.get_num_filter_parameters())]
# Should be implemented in child classes
def filter_param_regressor(self, features):
assert False
# Process the whole image, without masking
# Should be implemented in child classes
def process(self, img, param, defog, IcA):
assert False
def debug_info_batched(self):
return False
def no_high_res(self):
return False
# Apply the whole filter with masking
def apply(self,
img,
img_features=None,
defog_A=None,
IcA=None,
specified_parameter=None,
high_res=None):
assert (img_features is None) ^ (specified_parameter is None)
if img_features is not None:
filter_features, mask_parameters = self.extract_parameters(img_features)
filter_parameters = self.filter_param_regressor(filter_features)
else:
assert not self.use_masking()
filter_parameters = specified_parameter
mask_parameters = tf.zeros(
shape=(1, self.get_num_mask_parameters()), dtype=np.float32)
if high_res is not None:
# working on high res...
pass
debug_info = {}
# We only debug the first image of this batch
if self.debug_info_batched():
debug_info['filter_parameters'] = filter_parameters
else:
debug_info['filter_parameters'] = filter_parameters[0]
# self.mask_parameters = mask_parameters
# self.mask = self.get_mask(img, mask_parameters)
# debug_info['mask'] = self.mask[0]
#low_res_output = lerp(img, self.process(img, filter_parameters), self.mask)
low_res_output = self.process(img, filter_parameters, defog_A, IcA)
if high_res is not None:
if self.no_high_res():
high_res_output = high_res
else:
self.high_res_mask = self.get_mask(high_res, mask_parameters)
# high_res_output = lerp(high_res,
# self.process(high_res, filter_parameters, defog, IcA),
# self.high_res_mask)
else:
high_res_output = None
#return low_res_output, high_res_output, debug_info
return low_res_output, filter_parameters
def use_masking(self):
return self.cfg.masking
def get_num_mask_parameters(self):
return 6
# Input: no need for tanh or sigmoid
# Closer to 1 values are applied by filter more strongly
# no additional TF variables inside
def get_mask(self, img, mask_parameters):
if not self.use_masking():
print('* Masking Disabled')
return tf.ones(shape=(1, 1, 1, 1), dtype=tf.float32)
else:
print('* Masking Enabled')
with tf.name_scope(name='mask'):
# Six parameters for one filter
filter_input_range = 5
assert mask_parameters.shape[1] == self.get_num_mask_parameters()
mask_parameters = tanh_range(
l=-filter_input_range, r=filter_input_range,
initial=0)(mask_parameters)
size = list(map(int, img.shape[1:3]))
grid = np.zeros(shape=[1] + size + [2], dtype=np.float32)
shorter_edge = min(size[0], size[1])
for i in range(size[0]):
for j in range(size[1]):
grid[0, i, j,
0] = (i + (shorter_edge - size[0]) / 2.0) / shorter_edge - 0.5
grid[0, i, j,
1] = (j + (shorter_edge - size[1]) / 2.0) / shorter_edge - 0.5
grid = tf.constant(grid)
# Ax + By + C * L + D
inp = grid[:, :, :, 0, None] * mask_parameters[:, None, None, 0, None] + \
grid[:, :, :, 1, None] * mask_parameters[:, None, None, 1, None] + \
mask_parameters[:, None, None, 2, None] * (rgb2lum(img) - 0.5) + \
mask_parameters[:, None, None, 3, None] * 2
# Sharpness and inversion
inp *= self.cfg.maximum_sharpness * mask_parameters[:, None, None, 4,
None] / filter_input_range
mask = tf.sigmoid(inp)
# Strength
mask = mask * (
mask_parameters[:, None, None, 5, None] / filter_input_range * 0.5 +
0.5) * (1 - self.cfg.minimum_strength) + self.cfg.minimum_strength
print('mask', mask.shape)
return mask
# def visualize_filter(self, debug_info, canvas):
# # Visualize only the filter information
# assert False
def visualize_mask(self, debug_info, res):
return cv2.resize(
debug_info['mask'] * np.ones((1, 1, 3), dtype=np.float32),
dsize=res,
interpolation=cv2.cv2.INTER_NEAREST)
def draw_high_res_text(self, text, canvas):
cv2.putText(
canvas,
text, (30, 128),
cv2.FONT_HERSHEY_SIMPLEX,
0.8, (0, 0, 0),
thickness=5)
return canvas
class ExposureFilter(Filter):#gamma_param is 2*exposure_range + exposure_range
def __init__(self, net, cfg):
Filter.__init__(self, net, cfg)
self.short_name = 'E'
self.begin_filter_parameter = cfg.exposure_begin_param
self.num_filter_parameters = 1
def filter_param_regressor(self, features):
return tanh_range(
-self.cfg.exposure_range, self.cfg.exposure_range, initial=0)(features)
def process(self, img, param, defog, IcA):
return img * tf.exp(param[:, None, None, :] * np.log(2))
# def visualize_filter(self, debug_info, canvas):
# exposure = debug_info['filter_parameters'][0]
# if canvas.shape[0] == 64:
# cv2.rectangle(canvas, (8, 40), (56, 52), (1, 1, 1), cv2.FILLED)
# cv2.putText(canvas, 'EV %+.2f' % exposure, (8, 48),
# cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0))
# else:
# self.draw_high_res_text('Exposure %+.2f' % exposure, canvas)
class UsmFilter(Filter):#Usm_param is in [Defog_range]
def __init__(self, net, cfg):
Filter.__init__(self, net, cfg)
self.short_name = 'UF'
self.begin_filter_parameter = cfg.usm_begin_param
self.num_filter_parameters = 1
def filter_param_regressor(self, features):
return tanh_range(*self.cfg.usm_range)(features)
def process(self, img, param, defog_A, IcA):
def make_gaussian_2d_kernel(sigma, dtype=tf.float32):
radius = 12
x = tf.cast(tf.range(-radius, radius + 1), dtype=dtype)
k = tf.exp(-0.5 * tf.square(x / sigma))
k = k / tf.reduce_sum(k)
return tf.expand_dims(k, 1) * k
kernel_i = make_gaussian_2d_kernel(5)
print('kernel_i.shape', kernel_i.shape)
kernel_i = tf.tile(kernel_i[:, :, tf.newaxis, tf.newaxis], [1, 1, 1, 1])
# outputs = []
# for channel_idx in range(3):
# data_c = img[:, :, :, channel_idx:(channel_idx + 1)]
# data_c = tf.nn.conv2d(data_c, kernel_i, [1, 1, 1, 1], 'SAME')
# outputs.append(data_c)
pad_w = (25 - 1) // 2
padded = tf.pad(img, [[0, 0], [pad_w, pad_w], [pad_w, pad_w], [0, 0]], mode='REFLECT')
outputs = []
for channel_idx in range(3):
data_c = padded[:, :, :, channel_idx:(channel_idx + 1)]
data_c = tf.nn.conv2d(data_c, kernel_i, [1, 1, 1, 1], 'VALID')
outputs.append(data_c)
output = tf.concat(outputs, axis=3)
img_out = (img - output) * param[:, None, None, :] + img
# img_out = (img - output) * 2.5 + img
return img_out
class UsmFilter_sigma(Filter):#Usm_param is in [Defog_range]
def __init__(self, net, cfg):
Filter.__init__(self, net, cfg)
self.short_name = 'UF'
self.begin_filter_parameter = cfg.usm_begin_param
self.num_filter_parameters = 1
def filter_param_regressor(self, features):
return tanh_range(*self.cfg.usm_range)(features)
def process(self, img, param, defog_A, IcA):
def make_gaussian_2d_kernel(sigma, dtype=tf.float32):
radius = 12
x = tf.cast(tf.range(-radius, radius + 1), dtype=dtype)
k = tf.exp(-0.5 * tf.square(x / sigma))
k = k / tf.reduce_sum(k)
return tf.expand_dims(k, 1) * k
kernel_i = make_gaussian_2d_kernel(param[:, None, None, :])
print('kernel_i.shape', kernel_i.shape)
kernel_i = tf.tile(kernel_i[:, :, tf.newaxis, tf.newaxis], [1, 1, 1, 1])
# outputs = []
# for channel_idx in range(3):
# data_c = img[:, :, :, channel_idx:(channel_idx + 1)]
# data_c = tf.nn.conv2d(data_c, kernel_i, [1, 1, 1, 1], 'SAME')
# outputs.append(data_c)
pad_w = (25 - 1) // 2
padded = tf.pad(img, [[0, 0], [pad_w, pad_w], [pad_w, pad_w], [0, 0]], mode='REFLECT')
outputs = []
for channel_idx in range(3):
data_c = padded[:, :, :, channel_idx:(channel_idx + 1)]
data_c = tf.nn.conv2d(data_c, kernel_i, [1, 1, 1, 1], 'VALID')
outputs.append(data_c)
output = tf.concat(outputs, axis=3)
img_out = (img - output) * param[:, None, None, :] + img
return img_out
class DefogFilter(Filter):#Defog_param is in [Defog_range]
def __init__(self, net, cfg):
Filter.__init__(self, net, cfg)
self.short_name = 'DF'
self.begin_filter_parameter = cfg.defog_begin_param
self.num_filter_parameters = 1
def filter_param_regressor(self, features):
return tanh_range(*self.cfg.defog_range)(features)
def process(self, img, param, defog_A, IcA):
print(' defog_A:', img.shape)
print(' defog_A:', IcA.shape)
print(' defog_A:', defog_A.shape)
tx = 1 - param[:, None, None, :]*IcA
# tx = 1 - 0.5*IcA
tx_1 = tf.tile(tx, [1, 1, 1, 3])
return (img - defog_A[:, None, None, :])/tf.maximum(tx_1, 0.01) + defog_A[:, None, None, :]
class GammaFilter(Filter): #gamma_param is in [-gamma_range, gamma_range]
def __init__(self, net, cfg):
Filter.__init__(self, net, cfg)
self.short_name = 'G'
self.begin_filter_parameter = cfg.gamma_begin_param
self.num_filter_parameters = 1
def filter_param_regressor(self, features):
log_gamma_range = np.log(self.cfg.gamma_range)
return tf.exp(tanh_range(-log_gamma_range, log_gamma_range)(features))
def process(self, img, param, defog_A, IcA):
param_1 = tf.tile(param, [1, 3])
return tf.pow(tf.maximum(img, 0.0001), param_1[:, None, None, :])
# return img
# def visualize_filter(self, debug_info, canvas):
# gamma = debug_info['filter_parameters']
# cv2.rectangle(canvas, (8, 40), (56, 52), (1, 1, 1), cv2.FILLED)
# cv2.putText(canvas, 'G 1/%.2f' % (1.0 / gamma), (8, 48),
# cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0))
class ImprovedWhiteBalanceFilter(Filter):
def __init__(self, net, cfg):
Filter.__init__(self, net, cfg)
self.short_name = 'W'
self.channels = 3
self.begin_filter_parameter = cfg.wb_begin_param
self.num_filter_parameters = self.channels
def filter_param_regressor(self, features):
log_wb_range = 0.5
mask = np.array(((0, 1, 1)), dtype=np.float32).reshape(1, 3)
# mask = np.array(((1, 0, 1)), dtype=np.float32).reshape(1, 3)
print(mask.shape)
assert mask.shape == (1, 3)
features = features * mask
color_scaling = tf.exp(tanh_range(-log_wb_range, log_wb_range)(features))
# There will be no division by zero here unless the WB range lower bound is 0
# normalize by luminance
color_scaling *= 1.0 / (
1e-5 + 0.27 * color_scaling[:, 0] + 0.67 * color_scaling[:, 1] +
0.06 * color_scaling[:, 2])[:, None]
return color_scaling
def process(self, img, param, defog, IcA):
return img * param[:, None, None, :]
# return img
# def visualize_filter(self, debug_info, canvas):
# scaling = debug_info['filter_parameters']
# s = canvas.shape[0]
# cv2.rectangle(canvas, (int(s * 0.2), int(s * 0.4)), (int(s * 0.8), int(
# s * 0.6)), list(map(float, scaling)), cv2.FILLED)
class ColorFilter(Filter):
def __init__(self, net, cfg):
Filter.__init__(self, net, cfg)
self.curve_steps = cfg.curve_steps
self.channels = int(net.shape[3])
self.short_name = 'C'
self.begin_filter_parameter = cfg.color_begin_param
self.num_filter_parameters = self.channels * cfg.curve_steps
def filter_param_regressor(self, features):
color_curve = tf.reshape(
features, shape=(-1, self.channels,
self.cfg.curve_steps))[:, None, None, :]
color_curve = tanh_range(
*self.cfg.color_curve_range, initial=1)(color_curve)
return color_curve
def process(self, img, param, defog, IcA):
color_curve = param
# There will be no division by zero here unless the color filter range lower bound is 0
color_curve_sum = tf.reduce_sum(param, axis=4) + 1e-30
total_image = img * 0
for i in range(self.cfg.curve_steps):
total_image += tf.clip_by_value(img - 1.0 * i / self.cfg.curve_steps, 0, 1.0 / self.cfg.curve_steps) * \
color_curve[:, :, :, :, i]
total_image *= self.cfg.curve_steps / color_curve_sum
return total_image
# def visualize_filter(self, debug_info, canvas):
# curve = debug_info['filter_parameters']
# height, width = canvas.shape[:2]
# for i in range(self.channels):
# values = np.array([0] + list(curve[0][0][i]))
# values /= sum(values) + 1e-30
# scale = 1
# values *= scale
# for j in range(0, self.cfg.curve_steps):
# values[j + 1] += values[j]
# for j in range(self.cfg.curve_steps):
# p1 = tuple(
# map(int, (width / self.cfg.curve_steps * j, height - 1 -
# values[j] * height)))
# p2 = tuple(
# map(int, (width / self.cfg.curve_steps * (j + 1), height - 1 -
# values[j + 1] * height)))
# color = []
# for t in range(self.channels):
# color.append(1 if t == i else 0)
# cv2.line(canvas, p1, p2, tuple(color), thickness=1)
class ToneFilter(Filter):
def __init__(self, net, cfg):
Filter.__init__(self, net, cfg)
self.curve_steps = cfg.curve_steps
self.short_name = 'T'
self.begin_filter_parameter = cfg.tone_begin_param
self.num_filter_parameters = cfg.curve_steps
def filter_param_regressor(self, features):
tone_curve = tf.reshape(
features, shape=(-1, 1, self.cfg.curve_steps))[:, None, None, :]
tone_curve = tanh_range(*self.cfg.tone_curve_range)(tone_curve)
return tone_curve
def process(self, img, param, defog, IcA):
# img = tf.minimum(img, 1.0)
# param = tf.constant([[0.52, 0.53, 0.55, 1.9, 1.8, 1.7, 0.7, 0.6], [0.52, 0.53, 0.55, 1.9, 1.8, 1.7, 0.7, 0.6],
# [0.52, 0.53, 0.55, 1.9, 1.8, 1.7, 0.7, 0.6], [0.52, 0.53, 0.55, 1.9, 1.8, 1.7, 0.7, 0.6],
# [0.52, 0.53, 0.55, 1.9, 1.8, 1.7, 0.7, 0.6], [0.52, 0.53, 0.55, 1.9, 1.8, 1.7, 0.7, 0.6]])
# param = tf.constant([[0.52, 0.53, 0.55, 1.9, 1.8, 1.7, 0.7, 0.6]])
# param = tf.reshape(
# param, shape=(-1, 1, self.cfg.curve_steps))[:, None, None, :]
tone_curve = param
tone_curve_sum = tf.reduce_sum(tone_curve, axis=4) + 1e-30
total_image = img * 0
for i in range(self.cfg.curve_steps):
total_image += tf.clip_by_value(img - 1.0 * i / self.cfg.curve_steps, 0, 1.0 / self.cfg.curve_steps) \
* param[:, :, :, :, i]
# p_cons = [0.52, 0.53, 0.55, 1.9, 1.8, 1.7, 0.7, 0.6]
# for i in range(self.cfg.curve_steps):
# total_image += tf.clip_by_value(img - 1.0 * i / self.cfg.curve_steps, 0, 1.0 / self.cfg.curve_steps) \
# * p_cons[i]
total_image *= self.cfg.curve_steps / tone_curve_sum
img = total_image
return img
# def visualize_filter(self, debug_info, canvas):
# curve = debug_info['filter_parameters']
# height, width = canvas.shape[:2]
# values = np.array([0] + list(curve[0][0][0]))
# values /= sum(values) + 1e-30
# for j in range(0, self.curve_steps):
# values[j + 1] += values[j]
# for j in range(self.curve_steps):
# p1 = tuple(
# map(int, (width / self.curve_steps * j, height - 1 -
# values[j] * height)))
# p2 = tuple(
# map(int, (width / self.curve_steps * (j + 1), height - 1 -
# values[j + 1] * height)))
# cv2.line(canvas, p1, p2, (0, 0, 0), thickness=1)
class VignetFilter(Filter):
def __init__(self, net, cfg):
Filter.__init__(self, net, cfg)
self.short_name = 'V'
self.begin_filter_parameter = cfg.vignet_begin_param
self.num_filter_parameters = 1
def filter_param_regressor(self, features):
return tf.sigmoid(features)
def process(self, img, param):
return img * 0 # + param[:, None, None, :]
def get_num_mask_parameters(self):
return 5
# Input: no need for tanh or sigmoid
# Closer to 1 values are applied by filter more strongly
# no additional TF variables inside
def get_mask(self, img, mask_parameters):
with tf.name_scope(name='mask'):
# Five parameters for one filter
filter_input_range = 5
assert mask_parameters.shape[1] == self.get_num_mask_parameters()
mask_parameters = tanh_range(
l=-filter_input_range, r=filter_input_range,
initial=0)(mask_parameters)
size = list(map(int, img.shape[1:3]))
grid = np.zeros(shape=[1] + size + [2], dtype=np.float32)
shorter_edge = min(size[0], size[1])
for i in range(size[0]):
for j in range(size[1]):
grid[0, i, j,
0] = (i + (shorter_edge - size[0]) / 2.0) / shorter_edge - 0.5
grid[0, i, j,
1] = (j + (shorter_edge - size[1]) / 2.0) / shorter_edge - 0.5
grid = tf.constant(grid)
# (Ax)^2 + (By)^2 + C
inp = (grid[:, :, :, 0, None] * mask_parameters[:, None, None, 0, None]) ** 2 + \
(grid[:, :, :, 1, None] * mask_parameters[:, None, None, 1, None]) ** 2 + \
mask_parameters[:, None, None, 2, None] - filter_input_range
# Sharpness and inversion
inp *= self.cfg.maximum_sharpness * mask_parameters[:, None, None, 3,
None] / filter_input_range
mask = tf.sigmoid(inp)
# Strength
mask *= mask_parameters[:, None, None, 4,
None] / filter_input_range * 0.5 + 0.5
if not self.use_masking():
print('* Masking Disabled')
mask = mask * 0 + 1
else:
print('* Masking Enabled')
print('mask', mask.shape)
return mask
# def visualize_filter(self, debug_info, canvas):
# brightness = float(debug_info['filter_parameters'][0])
# cv2.rectangle(canvas, (8, 40), (56, 52), (brightness, brightness,
# brightness), cv2.FILLED)
#
class ContrastFilter(Filter):
def __init__(self, net, cfg):
Filter.__init__(self, net, cfg)
self.short_name = 'Ct'
self.begin_filter_parameter = cfg.contrast_begin_param
self.num_filter_parameters = 1
def filter_param_regressor(self, features):
# return tf.sigmoid(features)
return tf.tanh(features)
def process(self, img, param, defog, IcA):
luminance = tf.minimum(tf.maximum(rgb2lum(img), 0.0), 1.0)
contrast_lum = -tf.cos(math.pi * luminance) * 0.5 + 0.5
contrast_image = img / (luminance + 1e-6) * contrast_lum
return lerp(img, contrast_image, param[:, :, None, None])
# return lerp(img, contrast_image, 0.5)
# def visualize_filter(self, debug_info, canvas):
# exposure = debug_info['filter_parameters'][0]
# cv2.rectangle(canvas, (8, 40), (56, 52), (1, 1, 1), cv2.FILLED)
# cv2.putText(canvas, 'Ct %+.2f' % exposure, (8, 48),
# cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0))
class WNBFilter(Filter):
def __init__(self, net, cfg):
Filter.__init__(self, net, cfg)
self.short_name = 'BW'
self.begin_filter_parameter = cfg.wnb_begin_param
self.num_filter_parameters = 1
def filter_param_regressor(self, features):
return tf.sigmoid(features)
def process(self, img, param, defog, IcA):
luminance = rgb2lum(img)
return lerp(img, luminance, param[:, :, None, None])
# def visualize_filter(self, debug_info, canvas):
# exposure = debug_info['filter_parameters'][0]
# cv2.rectangle(canvas, (8, 40), (56, 52), (1, 1, 1), cv2.FILLED)
# cv2.putText(canvas, 'B&W%+.2f' % exposure, (8, 48),
# cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0))
class LevelFilter(Filter):
def __init__(self, net, cfg):
Filter.__init__(self, net, cfg)
self.short_name = 'Le'
self.begin_filter_parameter = cfg.level_begin_param
self.num_filter_parameters = 2
def filter_param_regressor(self, features):
return tf.sigmoid(features)
def process(self, img, param):
lower = param[:, 0]
upper = param[:, 1] + 1
lower = lower[:, None, None, None]
upper = upper[:, None, None, None]
return tf.clip_by_value((img - lower) / (upper - lower + 1e-6), 0.0, 1.0)
# def visualize_filter(self, debug_info, canvas):
# level = list(map(float, debug_info['filter_parameters']))
# level[1] += 1
# cv2.rectangle(canvas, (8, 40), (56, 52), (1, 1, 1), cv2.FILLED)
# cv2.putText(canvas, '%.2f %.2f' % tuple(level), (8, 48),
# cv2.FONT_HERSHEY_SIMPLEX, 0.25, (0, 0, 0))
class SaturationPlusFilter(Filter):
def __init__(self, net, cfg):
Filter.__init__(self, net, cfg)
self.short_name = 'S+'
self.begin_filter_parameter = cfg.saturation_begin_param
self.num_filter_parameters = 1
def filter_param_regressor(self, features):
return tf.sigmoid(features)
def process(self, img, param, defog, IcA):
img = tf.minimum(img, 1.0)
hsv = tf.image.rgb_to_hsv(img)
s = hsv[:, :, :, 1:2]
v = hsv[:, :, :, 2:3]
# enhanced_s = s + (1 - s) * 0.7 * (0.5 - tf.abs(0.5 - v)) ** 2
enhanced_s = s + (1 - s) * (0.5 - tf.abs(0.5 - v)) * 0.8
hsv1 = tf.concat([hsv[:, :, :, 0:1], enhanced_s, hsv[:, :, :, 2:]], axis=3)
full_color = tf.image.hsv_to_rgb(hsv1)
param = param[:, :, None, None]
color_param = param
img_param = 1.0 - param
return img * img_param + full_color * color_param
# def visualize_filter(self, debug_info, canvas):
# exposure = debug_info['filter_parameters'][0]
# if canvas.shape[0] == 64:
# cv2.rectangle(canvas, (8, 40), (56, 52), (1, 1, 1), cv2.FILLED)
# cv2.putText(canvas, 'S %+.2f' % exposure, (8, 48),
# cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0))
# else:
# self.draw_high_res_text('Saturation %+.2f' % exposure, canvas)