-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathtrain.py
323 lines (266 loc) · 14.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#! /usr/bin/env python
# coding=utf-8
import os
import time
import shutil
import numpy as np
import tensorflow as tf
import core.utils as utils
from tqdm import tqdm
from core.dataset import Dataset
from core.yolov3 import YOLOV3
from core.config import cfg
from core.config import args
import random
import cv2
import math
from filters import *
if args.use_gpu == 0:
gpu_id = '-1'
else:
gpu_id = args.gpu_id
gpu_list = list()
gpu_ids = gpu_id.split(',')
for i in range(len(gpu_ids)):
gpu_list.append('/gpu:%d' % int(i))
os.environ['CUDA_VISIBLE_DEVICES'] = gpu_id
exp_folder = os.path.join(args.exp_dir, 'exp_{}'.format(args.exp_num))
set_ckpt_dir = args.ckpt_dir
args.ckpt_dir = os.path.join(exp_folder, set_ckpt_dir)
if not os.path.exists(args.ckpt_dir):
os.makedirs(args.ckpt_dir)
config_log = os.path.join(exp_folder, 'config.txt')
arg_dict = args.__dict__
msg = ['{}: {}\n'.format(k, v) for k, v in arg_dict.items()]
utils.write_mes(msg, config_log, mode='w')
class YoloTrain(object):
def __init__(self):
self.anchor_per_scale = cfg.YOLO.ANCHOR_PER_SCALE
self.classes = utils.read_class_names(cfg.YOLO.CLASSES)
self.num_classes = len(self.classes)
self.learn_rate_init = cfg.TRAIN.LEARN_RATE_INIT
self.learn_rate_end = cfg.TRAIN.LEARN_RATE_END
self.first_stage_epochs = cfg.TRAIN.FISRT_STAGE_EPOCHS
self.second_stage_epochs = cfg.TRAIN.SECOND_STAGE_EPOCHS
self.warmup_periods = cfg.TRAIN.WARMUP_EPOCHS
self.initial_weight = cfg.TRAIN.INITIAL_WEIGHT
self.time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
self.moving_ave_decay = cfg.YOLO.MOVING_AVE_DECAY
self.max_bbox_per_scale = 150
self.train_logdir = "./data_cityfog/log/train"
self.trainset = Dataset('train')
self.testset = Dataset('test')
self.steps_per_period = len(self.trainset)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
self.sess = tf.Session(config=config)
# self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
with tf.name_scope('define_input'):
self.input_data = tf.placeholder(tf.float32, [None, None, None, 3], name='input_data')
self.defog_A = tf.placeholder(tf.float32, [None, 3], name='defog_A')
self.IcA = tf.placeholder(tf.float32, [None, None, None,1], name='IcA')
self.label_sbbox = tf.placeholder(dtype=tf.float32, name='label_sbbox')
self.label_mbbox = tf.placeholder(dtype=tf.float32, name='label_mbbox')
self.label_lbbox = tf.placeholder(dtype=tf.float32, name='label_lbbox')
self.true_sbboxes = tf.placeholder(dtype=tf.float32, name='sbboxes')
self.true_mbboxes = tf.placeholder(dtype=tf.float32, name='mbboxes')
self.true_lbboxes = tf.placeholder(dtype=tf.float32, name='lbboxes')
self.input_data_clean = tf.placeholder(tf.float32, [None, None, None, 3], name='input_data')
self.trainable = tf.placeholder(dtype=tf.bool, name='training')
with tf.name_scope("define_loss"):
self.model = YOLOV3(self.input_data, self.trainable, self.input_data_clean, self.defog_A, self.IcA)
t_variables = tf.trainable_variables()
print("t_variables", t_variables)
# self.net_var = [v for v in t_variables if not 'extract_parameters' in v.name]
self.net_var = tf.global_variables()
self.giou_loss, self.conf_loss, self.prob_loss, self.recovery_loss = self.model.compute_loss(
self.label_sbbox, self.label_mbbox, self.label_lbbox,
self.true_sbboxes, self.true_mbboxes, self.true_lbboxes)
# self.loss only includes the detection loss.
self.loss = self.giou_loss + self.conf_loss + self.prob_loss
with tf.name_scope('learn_rate'):
self.global_step = tf.Variable(1.0, dtype=tf.float64, trainable=False, name='global_step')
warmup_steps = tf.constant(self.warmup_periods * self.steps_per_period,
dtype=tf.float64, name='warmup_steps')
train_steps = tf.constant( (self.first_stage_epochs + self.second_stage_epochs)* self.steps_per_period,
dtype=tf.float64, name='train_steps')
self.learn_rate = tf.cond(
pred=self.global_step < warmup_steps,
true_fn=lambda: self.global_step / warmup_steps * self.learn_rate_init,
false_fn=lambda: self.learn_rate_end + 0.5 * (self.learn_rate_init - self.learn_rate_end) *
(1 + tf.cos(
(self.global_step - warmup_steps) / (train_steps - warmup_steps) * np.pi))
)
global_step_update = tf.assign_add(self.global_step, 1.0)
with tf.name_scope("define_weight_decay"):
moving_ave = tf.train.ExponentialMovingAverage(self.moving_ave_decay).apply(tf.trainable_variables())
with tf.name_scope("define_first_stage_train"):
self.first_stage_trainable_var_list = []
for var in tf.trainable_variables():
var_name = var.op.name
var_name_mess = str(var_name).split('/')
if var_name_mess[0] in ['conv_sbbox', 'conv_mbbox', 'conv_lbbox']:
self.first_stage_trainable_var_list.append(var)
first_stage_optimizer = tf.train.AdamOptimizer(self.learn_rate).minimize(self.loss,
var_list=self.first_stage_trainable_var_list)
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
with tf.control_dependencies([first_stage_optimizer, global_step_update]):
with tf.control_dependencies([moving_ave]):
self.train_op_with_frozen_variables = tf.no_op()
with tf.name_scope("define_second_stage_train"):
second_stage_trainable_var_list = tf.trainable_variables()
second_stage_optimizer = tf.train.AdamOptimizer(self.learn_rate).minimize(self.loss,
var_list=second_stage_trainable_var_list)
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
with tf.control_dependencies([second_stage_optimizer, global_step_update]):
with tf.control_dependencies([moving_ave]):
self.train_op_with_all_variables = tf.no_op()
with tf.name_scope('loader_and_saver'):
self.loader = tf.train.Saver(self.net_var)
self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=5)
with tf.name_scope('summary'):
tf.summary.scalar("learn_rate", self.learn_rate)
tf.summary.scalar("recovery_loss", self.recovery_loss)
tf.summary.scalar("giou_loss", self.giou_loss)
tf.summary.scalar("conf_loss", self.conf_loss)
tf.summary.scalar("prob_loss", self.prob_loss)
tf.summary.scalar("total_loss", self.loss)
# logdir = "./data/log/"
logdir = os.path.join(exp_folder, 'log')
if os.path.exists(logdir): shutil.rmtree(logdir)
os.mkdir(logdir)
self.write_op = tf.summary.merge_all()
self.summary_writer = tf.summary.FileWriter(logdir, graph=self.sess.graph)
def train(self):
self.sess.run(tf.global_variables_initializer())
try:
print('=> Restoring weights from: %s ... ' % self.initial_weight)
self.loader.restore(self.sess, self.initial_weight)
except:
print('=> %s does not exist !!!' % self.initial_weight)
print('=> Now it starts to train YOLOV3 from scratch ...')
self.first_stage_epochs = 0
def DarkChannel(im):
b, g, r = cv2.split(im)
dc = cv2.min(cv2.min(r, g), b);
return dc
def AtmLight(im, dark):
[h, w] = im.shape[:2]
imsz = h * w
numpx = int(max(math.floor(imsz / 1000), 1))
darkvec = dark.reshape(imsz, 1)
imvec = im.reshape(imsz, 3)
indices = darkvec.argsort(0)
indices = indices[(imsz - numpx):imsz]
atmsum = np.zeros([1, 3])
for ind in range(1, numpx):
atmsum = atmsum + imvec[indices[ind]]
A = atmsum / numpx
return A
def DarkIcA(im, A):
im3 = np.empty(im.shape, im.dtype)
for ind in range(0, 3):
im3[:, :, ind] = im[:, :, ind] / A[0, ind]
return DarkChannel(im3)
for epoch in range(1, 1+self.first_stage_epochs+self.second_stage_epochs):
if epoch <= self.first_stage_epochs:
train_op = self.train_op_with_frozen_variables
else:
train_op = self.train_op_with_all_variables
pbar = tqdm(self.trainset)
train_epoch_loss, test_epoch_loss = [], []
for train_data in pbar:
if args.fog_FLAG:
# start_time = time.time()
dark = np.zeros((train_data[0].shape[0], train_data[0].shape[1], train_data[0].shape[2]))
defog_A = np.zeros((train_data[0].shape[0], train_data[0].shape[3]))
IcA = np.zeros((train_data[0].shape[0], train_data[0].shape[1], train_data[0].shape[2]))
if DefogFilter in cfg.filters:
# print("**************************")
for i in range(train_data[0].shape[0]):
dark_i = DarkChannel(train_data[0][i])
defog_A_i = AtmLight(train_data[0][i], dark_i)
IcA_i = DarkIcA(train_data[0][i], defog_A_i)
dark[i, ...] = dark_i
defog_A[i, ...] = defog_A_i
IcA[i, ...] = IcA_i
IcA = np.expand_dims(IcA, axis=-1)
_, summary, train_step_loss, train_step_loss_recovery, global_step_val = self.sess.run(
[train_op, self.write_op, self.loss, self.recovery_loss, self.global_step], feed_dict={
self.input_data: train_data[0],
self.defog_A: defog_A,
self.IcA: IcA,
self.label_sbbox: train_data[1],
self.label_mbbox: train_data[2],
self.label_lbbox: train_data[3],
self.true_sbboxes: train_data[4],
self.true_mbboxes: train_data[5],
self.true_lbboxes: train_data[6],
self.input_data_clean: train_data[7],
self.trainable: True,
})
else:
_, summary, train_step_loss, global_step_val = self.sess.run(
[train_op, self.write_op, self.loss, self.global_step], feed_dict={
self.input_data: train_data[7],
self.label_sbbox: train_data[1],
self.label_mbbox: train_data[2],
self.label_lbbox: train_data[3],
self.true_sbboxes: train_data[4],
self.true_mbboxes: train_data[5],
self.true_lbboxes: train_data[6],
self.input_data_clean: train_data[7],
self.trainable: True,
})
train_epoch_loss.append(train_step_loss)
self.summary_writer.add_summary(summary, global_step_val)
pbar.set_description("train loss: %.2f" % train_step_loss)
if args.fog_FLAG:
for test_data in self.testset:
dark = np.zeros((test_data[0].shape[0], test_data[0].shape[1], test_data[0].shape[2]))
defog_A = np.zeros((test_data[0].shape[0], test_data[0].shape[3]))
IcA = np.zeros((test_data[0].shape[0], test_data[0].shape[1], test_data[0].shape[2]))
if DefogFilter in cfg.filters:
for i in range(test_data[0].shape[0]):
dark_i = DarkChannel(test_data[0][i])
defog_A_i = AtmLight(test_data[0][i], dark_i)
IcA_i = DarkIcA(test_data[0][i], defog_A_i)
dark[i, ...] = dark_i
defog_A[i, ...] = defog_A_i
IcA[i, ...] = IcA_i
IcA = np.expand_dims(IcA, axis=-1)
test_step_loss = self.sess.run(self.loss, feed_dict={
self.input_data: test_data[0],
self.defog_A: defog_A,
self.IcA: IcA,
self.label_sbbox: test_data[1],
self.label_mbbox: test_data[2],
self.label_lbbox: test_data[3],
self.true_sbboxes: test_data[4],
self.true_mbboxes: test_data[5],
self.true_lbboxes: test_data[6],
self.input_data_clean: test_data[7],
self.trainable: False,
})
test_epoch_loss.append(test_step_loss)
else:
for test_data in self.testset:
test_step_loss = self.sess.run(self.loss, feed_dict={
self.input_data: test_data[7],
self.label_sbbox: test_data[1],
self.label_mbbox: test_data[2],
self.label_lbbox: test_data[3],
self.true_sbboxes: test_data[4],
self.true_mbboxes: test_data[5],
self.true_lbboxes: test_data[6],
self.input_data_clean: test_data[7],
self.trainable: False,
})
test_epoch_loss.append(test_step_loss)
train_epoch_loss, test_epoch_loss = np.mean(train_epoch_loss), np.mean(test_epoch_loss)
ckpt_file = args.ckpt_dir + "/yolov3_test_loss=%.4f.ckpt" % test_epoch_loss
log_time = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
print("=> Epoch: %2d Time: %s Train loss: %.2f Test loss: %.2f Saving %s ..."
%(epoch, log_time, train_epoch_loss, test_epoch_loss, ckpt_file))
self.saver.save(self.sess, ckpt_file, global_step=epoch)
if __name__ == '__main__': YoloTrain().train()