-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.Rmd
executable file
·962 lines (730 loc) · 26.2 KB
/
index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
---
title: "Reproducible computation at scale in R"
author: Will Landau
output:
xaringan::moon_reader:
nature:
highlightLines: true
---
<style>
.inverse {
background-color: transparent;
text-shadow: 0 0 0px transparent;
}
.title-slide {
vertical-align: bottom !important;
text-align: center !important;
}
.title-slide h1 {
position: absolute;
top: 0;
left: 0;
right: 0;
width: 100%;
line-height: 4em;
color: #666666;
}
.title-slide h3 {
line-height: 6em;
color: #666666;
}
.title-slide {
background-color: white;
background-image: url('images/logo.png');
background-repeat: no-repeat;
background-size: 25%;
}
.remark-slide-content:after {
content: "Copyright Eli Lilly and Company";
position: absolute;
bottom: -5px;
left: 10px;
height: 40px;
width: 100%;
font-family: Helvetica, Arial, sans-serif;
font-size: 0.7em;
color: gray;
background-repeat: no-repeat;
background-size: contain;
}
</style>
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
warning = FALSE,
comment = "#>",
fig.align = "center",
fig.width = 10,
fig.height = 7,
out.width = "80%",
out.height = "80%"
)
```
```{r, include = FALSE, message = FALSE}
options(
warnPartialMatchArgs = FALSE,
drake_clean_menu = FALSE,
drake_make_menu = FALSE,
htmltools.dir.version = FALSE
)
packages <- c(
"targets",
"keras",
"recipes",
"rsample",
"tidyverse",
"yardstick"
)
purrr::walk(
packages,
function(pkg) {
suppressMessages(suppressWarnings(library(pkg, character.only = TRUE)))
}
)
Sys.setenv(TAR_SCRIPT_ASK = "false")
tar_destroy()
```
## Large statistical computation
* [Bayesian data analysis](https://mc-stan.org/)
* [Bayesian network meta-analysis](https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/bayesian-network-meta-analysis.html)
* [Graph-based multiple comparison procedures](https://github.com/kornl/gMCP)
* [Subgroup identification](https://cran.r-project.org/web/packages/TSDT/index.html)
* [Predictive modeling](http://appliedpredictivemodeling.com/computing)
* [Deep neural networks](https://keras.rstudio.com/)
* [PK/PD modeling](https://github.com/nlmixrdevelopment/nlmixr)
* Clinical trial simulation
* Target identification
???
Thank you all for coming, and thank you to nyhackr and Lander Analytics for the opportunity to speak today.
I come from the life sciences, and we develop ambitious computational workflows for Statistics and data science. There's a lot of Bayesian analysis, machine learning, simulation, and prediction. Other domains have similar workloads, and we need to think about both efficiency and reproducibility right from the start.
---
## Common features
1. Heavy use of the [R language](https://www.r-project.org/).
2. Long runtimes.
3. Multiple sub-tasks.
4. Frequent changes to code and data.
<img src = "./images/sisyphus.svg" align="left" style="border: none; box-shadow: none; height: 325px; text-align: center;">
<br>
<a href="https://openclipart.org/detail/275842/sisyphus-overcoming-silhouette">https://openclipart.org/detail/275842/sisyphus-overcoming-silhouette</a>
???
Many of these projects require long runtimes. Methods like Markov chain Monte Carlo and deep neural nets are computationally expensive. It could take hours or even days just to fit a single model. That's fine if you're only going to run the project once, or at regularly scheduled times. But if the code is still under development, it's easy to get trapped in a vicious Sisyphean cycle.
---
## Interconnected tasks
<center>
<img src = "./images/workflow.png" align="middle" style="border: none; box-shadow: none; text-align: center;">
</center>
???
A large workflow has a large number of moving parts. We have datasets that we preprocess or simulate, analyses of those datasets, and summaries of the analyses.
---
## Changes
<center>
<img src = "./images/change.png" align="middle" style="border: none; box-shadow: none; text-align: center;">
</center>
???
If you change any one of these parts - whether it's a bugfix, a tweak to a model, or some new data -
---
## Consequences
<center>
<img src = "./images/downstream.png" align="middle" style="border: none; box-shadow: none; text-align: center;">
</center>
???
Then everything that depends on it is no longer valid, and you need to rerun the computation to bring the results back up to date. This is seriously frustrating when you're in development and you're still making a constant stream of changes to code and data in real time. If every change means you need to rerun the project, there's no way the results can keep up...
---
## Pipeline tools and workflow managers
<center>
<img src = "./images/infographic.svg" align="middle" style="border: none; box-shadow: none; text-align: center;">
</center>
- Tons exist already: [github.com/pditommaso/awesome-pipeline](https://github.com/pditommaso/awesome-pipeline).
- Most are language-agnostic or designed for Python or the shell.
???
...unless you use a pipeline tool. There are pipeline tools for production which resemble Apache Airflow, and there are pipeline tools for development which resemble GNU Make. Today, I'm going to focus on Make-like tools because those are the ones I think are designed for this part of the process. It's an action-packed space, and there are a lot of great options. But unfortunately, there's not a whole lot for R.
---
## What distinguishes `targets`?
<center>
<img src = "./images/R.png" align="middle" style="border: none; box-shadow: none; text-align: center; height: 80px">
</center>
* Fundamentally designed for R.
* Supports a clean, modular, function-oriented programming style.
* Abstracts files as R objects and automatically manages data.
* Surpasses the permanent limitations of its predecessor, [`drake`](https://github.com/ropensci/drake): <https://wlandau.github.io/targets/articles/need.html>
???
That's where targets comes in. targets is a Make-like pipeline tool that is fundamentally designed for R. You can call it from an R session, it supports a clean, idiomatic, function-oriented style of programming, and it helps you store and retrieve your results. Most importantly, it gets you out of the Sisyphean loop of long computation, enhances reproducibility, and takes the frustration out of data science.
---
## Example targets workflow: validate a Bayesian model
$$
\begin{aligned}
y_i &\stackrel{\text{iid}}{\sim} \text{Normal}(\alpha + \beta \cdot x_i, \ \sigma^2) \\
\alpha &\sim \text{Normal}(0, 1) \\
\beta &\sim \text{Normal}(0, 1) \\
\sigma &\sim \text{HalfCauchy}(0, 1) \\
\end{aligned}
$$
1. Simulate 1000 datasets from the model.
1. Fit the model to each simulated dataset.
1. Verify that in 90% of the simulation reps, the $\beta$ parameter values used for data generation are covered in 90% credible intervals. (Should repeat for other parameters too.)
---
## Stan model
```r
data {
int <lower = 1> n;
vector[n] x;
vector[n] y;
}
parameters {
real alpha;
real beta;
real <lower = 0> sigma;
}
model {
y ~ normal(alpha + x * beta, sigma);
alpha ~ normal(0, 1);
beta ~ normal(0, 1);
sigma ~ cauchy(0, 1);
}
```
---
## Function for data generation
```{r}
simulate_data_continuous <- function() {
alpha <- rnorm(1, 0, 1)
beta <- rnorm(1, 0, 1)
sigma <- rhcauchy(1, 1)
x <- rnorm(100, 1, 1) # continuous covariate
y <- rnorm(100, alpha + x * beta, sigma)
sim <- basename(tempfile(pattern = "sim"))
tibble(x = x, y = y, beta_true = beta, sim = sim)
}
```
---
## Function to fit the model
```{r}
fit_model <- function(data, model_file) {
stan_data <- list(x = data$x, y = data$y, n = nrow(data))
truth <- data$beta_true[1]
model <- cmdstan_model(model_file)
fit <- model$sample(data = stan_data, refresh = 0)
fit$summary() %>%
filter(variable == "beta") %>%
mutate(beta_true = truth, cover_beta = q5 < truth & truth < q95)
}
```
---
## Utility functions
```{r}
compile_model <- function(model_file) {
quiet(cmdstan_model(model_file))
model_file
}
map_sims <- function(data, model_file) {
data %>%
group_by(sim) %>%
group_modify(~quiet(fit_model(.x, model_file = model_file))) %>%
ungroup()
}
quiet <- function(code) {
sink(nullfile())
on.exit(sink())
suppressMessages(code)
}
```
---
## File structure
```{r, eval = FALSE}
├── run.sh
├── run.R
├── _targets.R #<<
├── _targets/
├── sge.tmpl
├── R
│ ├── functions.R #<<
│ └── utils.R #<<
├── stan
│ └── model.stan
└── report.Rmd
```
---
## Setup in _targets.R
```{r, eval = FALSE}
# Beginning of _targets.R
library(targets)
library(tarchetypes)
source("R/functions.R")
source("R/utils.R")
options(tidyverse.quiet = TRUE)
options(clustermq.scheduler = "sge", clustermq.template = "sge.tmpl")
tar_option_set(
packages = c("cmdstanr", "extraDistr", "rmarkdown", "tidyverse")
)
```
---
## Pipeline in _targets.R
```{r, eval = FALSE}
# End of _targets.R
tar_pipeline(
tar_target(
model_file,
quiet(compile_model("stan/model.stan")),
format = "file",
deployment = "main"
),
tar_target(index_batch, seq_len(25)),
tar_target(index_sim, seq_len(40)),
tar_target(
data_continuous,
map_dfr(index_sim, ~simulate_data_continuous()),
pattern = map(index_batch),
format = "fst_tbl"
)
)
```
---
## Inspect the graph
```{r, eval = FALSE}
tar_visnetwork()
```
<img src="./images/graph1.png" height="400px">
---
## Run the targets
```{r, eval = FALSE}
tar_make()
#> ● run target batch_index
#> ● run target model_file
#> ● run branch data_continuous_f385e0ef
#> ● run branch data_continuous_0217a462
#> ● run branch data_continuous_a06bc09e
#> ● run branch data_continuous_c1e661c3
#> ...
```
---
## Now all targets are up to date.
```{r, eval = FALSE}
tar_make()
#> ✓ skip target batch_index
#> ✓ skip target model_file
#> ✓ skip branch data_continuous_f385e0ef
#> ✓ skip branch data_continuous_0217a462
#> ✓ skip branch data_continuous_a06bc09e
#> ✓ skip branch data_continuous_c1e661c3
#> ...
#> ✓ Already up to date.
```
---
## Now all targets are up to date.
```{r, eval = FALSE}
tar_visnetwork()
```
<img src="./images/graph2.png" height="400px">
---
## Inspect the data
```{r, eval = FALSE}
tar_read(data_continuous, branches = 1) # see also tar_load()
#> # A tibble: 200 x 4
#> x y beta_true rep
#> <dbl> <dbl> <dbl> <chr>
#> 1 0.446 1.37 -0.870 rep3841223f956f
#> 2 2.01 -0.361 -0.870 rep3841223f956f
#> 3 1.05 -0.183 -0.870 rep3841223f956f
#> 4 0.734 -0.891 -0.870 rep3841223f956f
#> 5 0.567 1.18 -0.870 rep3841223f956f
#> 6 1.30 0.306 -0.870 rep3841223f956f
#> 7 0.649 0.0242 -0.870 rep3841223f956f
#> 8 0.678 0.793 -0.870 rep3841223f956f
#> 9 1.05 0.688 -0.870 rep3841223f956f
#> 10 -0.437 2.25 -0.870 rep3841223f956f
#> # … with 190 more rows
```
---
## Add the models to the pipeline
```{r, eval = FALSE}
# _targets.R
# setup...
tar_pipeline(
# existing targets...
tar_target(
fit_continuous,
map_sims(data_continuous, model_file = model_file),
pattern = map(data_continuous),
format = "fst_tbl"
)
)
```
---
## Check the dependency graph
```{r, eval = FALSE}
tar_visnetwork()
```
<img src="./images/graph3.png" height = "400px">
---
## Run the models on a cluster
```{r, eval = FALSE}
tar_make_clustermq(workers = 25)
#> ✓ skip target batch_index
#> ✓ skip target model_file
#> ✓ skip branch data_continuous_f385e0ef
#> ✓ skip branch data_continuous_0217a462
#> ...
#> ● run branch fit_continuous_5f87e2ff
#> ● run branch fit_continuous_d5dfa376
#> ...
```
---
## Inspect the model results
```{r, eval = FALSE}
tar_read(fit_continuous)
#> # A tibble: 8 x 13
#> rep variable mean median sd mad q5 q95
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 rep3… beta -0.765 -0.765 0.0868 0.0856 -0.905 -0.619
#> 2 rep3… beta 1.03 1.03 0.0840 0.0852 0.892 1.17
#> 3 rep3… beta -0.560 -0.560 0.0309 0.0306 -0.612 -0.511
#> 4 rep3… beta 0.859 0.859 0.0302 0.0306 0.810 0.908
#> 5 rep3… beta -0.0980 -0.0962 0.111 0.109 -0.280 0.0792
#> 6 rep3… beta 0.462 0.463 0.0567 0.0565 0.369 0.555
#> 7 rep3… beta 0.316 0.318 0.0848 0.0840 0.178 0.454
#> 8 rep3… beta 0.499 0.499 0.00727 0.00709 0.486 0.511
#> # … with 5 more variables: rhat <dbl>, ess_bulk <dbl>,
#> # ess_tail <dbl>, beta_true <dbl>, cover_beta <lgl>
```
---
## Inspect the graph
```{r, eval = FALSE}
tar_visnetwork(label = c("time", "size", "branches"))
```
<img src="./images/graph4.png" height = "400px">
---
## Add discrete data
```{r, eval = FALSE}
# functions.R
simulate_data_discrete <- function() {
alpha <- rnorm(1, 0, 1)
beta <- rnorm(1, 0, 1)
sigma <- rhcauchy(1, 1)
x <- rbinom(100, 1, 0.5) # discrete covariate
y <- rnorm(100, alpha + x * beta, sigma)
sim <- basename(tempfile(pattern = "sim"))
tibble(x = x, y = y, beta_true = beta, sim = sim)
}
```
---
## Add an R Markdown report
<img src="./images/report.png" height = "450px">
---
## Add new targets
```{r, eval = FALSE}
# _targets.R
# setup...
tar_pipeline(
# existing targets...
tar_target(
data_discrete,
map_dfr(index_sim, ~simulate_data_discrete()),
pattern = map(index_batch),
format = "fst_tbl"
),
tar_target(
fit_discrete,
map_sims(data_discrete, model_file = model_file),
pattern = map(data_discrete),
format = "fst_tbl"
),
tar_render(report, "report.Rmd") # from tarchetypes
)
```
---
## New targets
```{r, eval = FALSE}
tar_visnetwork(label = c("time", "size", "branches"))
```
<img src="./images/graph5.png" height = "400px">
---
## Only the new targets run
```{r, eval = FALSE}
tar_make_clustermq(workers = 25)
#> ✓ skip target batch_index
#> ✓ skip target model_file
#> ✓ skip branch data_continuous_f385e0ef
#> ✓ skip branch data_continuous_0217a462
#> ...
#> ✓ skip branch fit_continuous_5f87e2ff
#> ✓ skip branch fit_continuous_d5dfa376
#> ...
#> ● run branch data_discrete_06241955
#> ● run branch data_discrete_88664909
#> ...
#> ● run branch fit_discrete_e31322f6
#> ● run branch fit_discrete_a2fab7f4
#> ...
#> ● run target report
```
---
## Change a function
```{r, eval = FALSE}
# functions.R
simulate_data_discrete <- function(...) {
alpha <- rnorm(1, 0, 1)
beta <- rnorm(1, 0, 1)
sigma <- rhcauchy(1, 1)
x <- rbinom(100, 1, 0.3) # previously 0.5 #<<
y <- rnorm(100, alpha + x * beta, sigma)
sim <- basename(tempfile(pattern = "sim"))
tibble(x = x, y = y, beta_true = beta, sim = sim)
}
```
---
## Downstream targets are automatically invalidated
```{r, eval = FALSE}
tar_visnetwork()
```
<img src="./images/graph5.png" height = "400px">
---
## Only the affected targets rerun
```{r, eval = FALSE}
tar_make_clustermq(workers = 25)
#> ✓ skip target batch_index
#> ✓ skip target model_file
#> ✓ skip branch data_continuous_f385e0ef
#> ✓ skip branch data_continuous_0217a462
#> ...
#> ✓ skip branch fit_continuous_5f87e2ff
#> ✓ skip branch fit_continuous_d5dfa376
#> ...
#> ● run branch data_discrete_06241955
#> ● run branch data_discrete_88664909
#> ...
#> ● run branch fit_discrete_e31322f6
#> ● run branch fit_discrete_a2fab7f4
#> ...
#> ● run target report
```
---
## Inspect the report
<img src="./images/report2.png" height = "500px">
---
## Inspect the report
<img src="./images/report3.png" height = "500px">
---
## Evidence of reproducibility
```{r, eval = FALSE}
tar_visnetwork()
```
<img src="./images/graph6.png" height = "400px">
---
## Resources
* Get [`targets`](https://github.com/wlandau/targets):
```{r, eval = FALSE}
install.packages("remotes")
remotes::install_github("wlandau/targets")
```
* Code: <https://github.com/wlandau/targets-stan>
* These slides: <https://wlandau.github.io/nyhackr2020>
* Tutorial materials: <https://github.com/wlandau/targets-tutorial>
* Development repository: <https://github.com/wlandau/targets>
* Full user manual: <https://wlandau.github.io/targets-manual/>
* Reference website: <https://wlandau.github.io/targets/>
???
There are several resources to learn about targets. There's a reference website, an online user manual, and a repository with the example code from today.
---
## Live coding: continuously deploy a Shiny app
```{r, eval = FALSE}
tar_pipeline(
...,
tar_target(
results_file,
export_results(continuous = fit_continuous, discrete = fit_discrete),
format = "file"
),
tar_target(app_source, "app.R", format = "file"),
tar_target(deploy, deploy_app(app_source, results_file), deployment = "main")
)
```
---
## What about `drake`?
* `drake` is still an excellent choice for pipeline management, but it has permanent user-side limitations.
* `targets` was created to overcome these limitations and create a smoother user experience.
1. Stronger guardrails by design.
1. A friendlier, lighter, more transparent data management system.
1. Show which *functions* are up to date.
1. More flexible dynamic branching.
1. Improved parallel efficiency.
1. Designed for custom user-side [metaprogramming](https://wlandau.github.io/targets-manual/branching.html#metaprogramming) and target archetypes: <https://wlandau.github.io/tarchetypes/>.
* The statement of need describes the details: <https://wlandau.github.io/targets/articles/need.html>.
???
But what about drake? drake already does all these things, and it's still an excellent choice for Make-like pipeline management. But it does have permanent user-side limitations. We've been developing, improving, expanding, and refining drake for several years, and we've reached the point where the most important problems to tackle are exactly the problems we cannot solve in this tool. It's just too big and too set in its ways, and its architecture was originally designed around assumptions that no longer hold up. To overcome these permanent limitations, we need a new tool that borrows from drake's journey and advances the user experience beyond what drake is capable of, and that new tool is targets. targets has stronger guardrails, lighter data management, greater transparency around data and the process of watching for changes, more flexible dynamic branching, better parallel efficiency, and design that lets us build on top of it more easily. The targets package website has a statement of need describing the changes in more detail.
---
## Guardrails in `targets`
* The only way to use `targets` is the correct way.
* Main guardrails:
1. Always run in a fresh R process (unless you deliberately configure `targets` for debugging).
2. Require a `_targets.R` configuration file in the project root.
3. Require the `_targets/` data store to always be in the project root.
???
Let's start with guardrails. The only way to use targets is the correct way. Unless you deliberately opt out for debugging purposes, targets always does its work in a fresh clean reproducible R process to avoid unpredictably invalidating targets. It's also paternalistic about your working directory and data storage. It removes flexibility where it doesn't belong, and it keeps users from getting themselves into trouble.
---
## `drake`'s cache
```
.drake/
├── config/
├── data/
├───── 17bfcef645301416.rds
├───── 21935c86f12692e2.rds
├───── 37caf5df2892cfc4.rds
├───── ...
├── drake/
├── keys/
├───── memoize/
├───── meta/
├───── objects/
├───── ...
└── scratch/
```
???
Now for data management. drake's cache is a large file system. It has hundreds of tiny bookkeeping files, it gets heavier and heavier over time unless you deliberately run garbage collection, and it's not human-readable. If you commit this thing to Git, or try to share with your colleagues, or try to diagnose cryptic errors that come from corrupted data, you're going to have a hard time.
---
## The data store in `targets`
```
_targets/
├── meta/
├───── meta
├───── progress
├── objects/
├───── target_name_1
├───── target_name_2
├───── target_name_3
└───── ...
```
???
targets simplifies data storage. It only stores what it needs to. There's one file per target in the objects/ folder, one data.table with metadata, and one data.table with runtime progress information. The data store is much lighter and much more portable, and the file names all make sense. And it survives corruptions far more easily. Of all these files, only the metadata file is sacred. Anything else can break and the project can recover just by rerunning one or two targets.
---
## Seamless AWS S3 integration
<https://wlandau.github.io/targets-manual/cloud.html>
```{r, eval = FALSE}
# _targets.R
tar_option_set(resources = list(bucket = "my-bucket-name"))
tar_pipeline(
tar_target(dataset, get_large_dataset(), format = "aws_fst_tbl"),
tar_target(analysis, analyze_dataset(dataset), format = "aws_qs")
)
```
```{r, eval = FALSE}
# R session
tar_make()
tar_read(dataset)
```
???
The simpler data store paved the way for seamless, Metaflow-like integration with Amazon S3. There's a little config, but after that, `targets` will automatically upload the return values to an S3 bucket. And retrieving cloud data feels exactly the same as reading local data.
---
## Show which functions are out of date

???
drake tells you which targets are out of date, but it cannot point to the precise functions and global objects that changed since the last run of the pipeline. targets provides this information, which significantly decreases frustration and increases reproducibility. In this example dependency graph, we can see that the create_plot() function changed, which is one of the reasons targets hist and report are no longer up to date.
---
## Dynamic branching with `dplyr`
```{r, eval = TRUE}
library(dplyr)
library(targets)
data.frame(
x = seq_len(6),
id = rep(letters[seq_len(3)], each = 2)
) %>%
group_by(id) %>%
tar_group() #<<
```
???
Now for dynamic branching. drake began as a static tool, whereas targets is fundamentally dynamic. In fact, targets finally achieves one of the most frequently requested features for drake: dynamic branching over arbitrary subsets of data frames. First, we define a grouped data frame with `dplyr::group_by()`, `targets::tar_group()`, and `iteration = "group"`.
---
## Define a target with groups.
```{r, eval = FALSE}
tar_target(
data,
data.frame(
x = seq_len(6),
id = rep(letters[seq_len(3)], each = 2)
) %>%
group_by(id) %>%
tar_group(), #<<
iteration = "group" #<<
)
```
???
Then, every downstream target that branches over it will automatically create one branch for each group of rows.
---
## Inefficient dynamic branching in drake

???
The efficiency of dynamic branching is also better. Dynamic sub-targets in drake are strictly nested inside their parents, so all the sub-targets in a group must finish before any downstream sub-target can begin. But targets knows how to advance forward even if not all the upstream branches are finished. This behavior saves runtime and conserves computing resources and gets work done faster..
---
## Efficient dynamic branching in targets

???
The efficiency of dynamic branching is also better. Dynamic sub-targets in drake are strictly nested inside their parents, so all the sub-targets in a group must finish before any downstream sub-target can begin. But targets knows how to advance forward even if not all the upstream branches are finished. This behavior saves runtime and conserves computing resources and gets work done faster..
---
## Composable dynamic branching patterns
```{r, eval = FALSE}
# _targets.R
tar_pipeline(
tar_target(w, seq_len(2)),
tar_target(x, head(letters, 3)),
tar_target(y, head(LETTERS, 3)),
tar_target(
z,
data.frame(w = w, x = x, y = y),
pattern = cross(w, map(x, y)) #<<
)
)
```
---
## Composable dynamic branching patterns
* `pattern = cross(w, map(x, y))` is equivalent to `crossing(w, nesting(x, y))` from `tidyr`.
```{r, eval = FALSE}
tar_make(reporter = "silent")
tar_read(z)
#> w x y
#> 1 1 a A
#> 2 1 b B
#> 3 1 c C
#> 4 2 a A
#> 5 2 b B
#> 6 2 c C
```
* Idea from [@glep](https://github.com/glep) and [@djbirke](https://github.com/djbirke) on GitHub.
---
## New pattern types (easy to add more)
* `map()`: iterate over one or more targets in sequence.
* `cross()`: iterate over combinations of slices of targets.
* `head()`: restrict branching to the first few elements.
* `tail()`: restrict branching to the last few elements.
* `sample()`: restrict branching to a random subset of elements.
---
## Dynamic branching emulation
```{r}
tar_pattern(cross(sample(x, 2), map(y, z)), x = 25, y = 3, z = 3)
```
---
## Metaprogramming
* `tar_target_raw()` avoids non-standard evaluation and supports third-party metaprogramming.
* The following are equivalent ways to define a target.
```{r, eval = FALSE}
# For most users:
tar_target(data, simulate_data(), pattern = map(index))
# For developers who metaprogram reusable pipeline archetypes:
tar_target_raw(
"data",
quote(simulate_data()),
pattern = quote(map(index))
)
```
???
Lastly, targets is easier to extend and build on. Unlike drake, targets can avoid non-standard evaluation and domain-specific languages. The tar_target_raw() function lets you define targets programmatically and opens up a lot of flexibility. The online manual walks you through how to to use tar_target_raw() for custom static branching.
---
## Target archetypes
* The `tarchetypes` package has helpers for commonly used targets: <https://wlandau.github.io/tarchetypes/>
Function | Target archetype
---|---
`tar_render()` | Render a dependency-aware R Markdown report.
`tar_knit()` | Run a dependency-aware `knitr` report.
`tar_change()` | Always run a target when a custom object changes.
`tar_force()` | Always run a target when a custom condition is true.
`tar_skip()` | Never run a target when a custom condition is true.
`tar_plan()` | Simplified `drake`-like syntax for `targets` pipelines.
???
In addition, there's an external package called `tarchetypes` that uses these metaprogramming capabilities to write shorthand for commonly used targets and pipelines. These archetypes abstract away configuration details and make it easier to write concise readable pipelines.