Skip to content

Commit 50d8be8

Browse files
authored
Adding no-kalman tracking mode, class_id aggregation, video tracking examples and other small improvements (#17)
1 parent 6d52e07 commit 50d8be8

20 files changed

+674
-214
lines changed

Makefile

+9-1
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ env-install:
2020
clean:
2121
autoflake --in-place --remove-unused-variables ./motpy/*.py ./tests/*.py
2222

23-
check:
23+
static-check:
2424
mypy --ignore-missing-imports motpy
2525

2626
demo-mot16:
@@ -29,3 +29,11 @@ demo-mot16:
2929

3030
demo-webcam:
3131
python examples/webcam_face_tracking.py
32+
33+
demo-video:
34+
python examples/detect_and_track_in_video.py \
35+
--video_path=./assets/video.mp4 \
36+
--detect_labels=['car','truck'] \
37+
--tracker_min_iou=0.2 \
38+
--architecture=fasterrcnn \
39+
--device=cuda

README.md

+65-32
Original file line numberDiff line numberDiff line change
@@ -4,57 +4,86 @@ Project is meant to provide a simple yet powerful baseline for multiple object t
44

55
![2D tracking preview](assets/mot16_challange.gif)
66

7-
*video source: https://motchallenge.net/data/MOT16/ - sequence 11*
7+
_video source: <https://motchallenge.net/data/MOT16/> - sequence 11_
88

9-
## Features:
9+
## Features
1010

11-
- tracking by detection paradigm
12-
- IOU + (optional) feature similarity matching strategy
13-
- Kalman filter used to model object trackers
14-
- each object is modeled as a center point (n-dimensional) and its size (n-dimensional); e.g. 2D position with width and height would be the most popular use case for bounding boxes tracking
15-
- seperately configurable system order for object position and size (currently 0th, 1st and 2nd order systems are allowed)
16-
- quite fast, more than realtime performance even on Raspberry Pi
11+
- tracking by detection paradigm
12+
- IOU + (optional) feature similarity matching strategy
13+
- Kalman filter used to model object trackers
14+
- each object is modeled as a center point (n-dimensional) and its size (n-dimensional); e.g. 2D position with width and height would be the most popular use case for bounding boxes tracking
15+
- seperately configurable system order for object position and size (currently 0th, 1st and 2nd order systems are allowed)
16+
- quite fast, more than realtime performance even on Raspberry Pi
1717

18-
## Installation:
18+
## Installation
1919

20-
### Latest release:
20+
### Latest release
2121

2222
```bash
2323
pip install motpy
2424
```
2525

26-
### Develop:
26+
#### Additional installation steps on Raspberry Pi
27+
28+
You might need to have to install following dependencies on RPi platform:
29+
30+
```bash
31+
sudo apt-get install python-scipy
32+
sudo apt install libatlas-base-dev
33+
```
34+
35+
### Develop
36+
2737
```bash
2838
git clone https://github.com/wmuron/motpy
2939
cd motpy
3040
make install-develop # to install editable version of library
3141
make test # to run all tests
3242
```
3343

34-
## Demo
44+
## Example usage
3545

36-
### 2D tracking
46+
### 2D tracking - synthetic example
3747

3848
Run demo example of tracking N objects in 2D space. In the ideal world it will show a bunch of colorful objects moving on a grey canvas in various directions, sometimes overlapping, sometimes not. Each object is detected from time to time (green box) and once it's being tracked by motpy, its track box is drawn in red with an ID above.
3949

40-
```
50+
```bash
4151
make demo
4252
```
4353

44-
![2D tracking preview](assets/2d_multi_object_tracking.gif)
54+
<https://user-images.githubusercontent.com/5874874/134305624-d6358cb1-39f8-4499-8a7b-64745f4795a6.mp4>
55+
56+
### Detect and track objects in the video
57+
58+
- example uses a COCO-trained model provided by torchvision library
59+
- to run this example, you'll have to install `requirements_dev.txt` dependencies (`torch`, `torchvision`, etc.)
60+
- to run on CPU, specify `--device=cpu`
61+
62+
```bash
63+
python examples/detect_and_track_in_video.py \
64+
--video_path=./assets/video.mp4 \
65+
--detect_labels=['car','truck'] \
66+
--tracker_min_iou=0.15 \
67+
--device=cuda
68+
```
69+
70+
<https://user-images.githubusercontent.com/5874874/134303165-b6835c8a-9cfe-486c-b79f-499f638c0a71.mp4>
71+
72+
_video source: <https://www.youtube.com/watch?v=PGMu_Z89Ao8/>, a great YT channel created by J Utah_
4573

4674
### MOT16 challange tracking
4775

48-
1. Download MOT16 dataset from `https://motchallenge.net/data/MOT16/` and extract to `~Downloads/MOT16` directory,
49-
2. Type the command:
50-
```bash
51-
python examples/mot16_challange.py --dataset_root=~/Downloads/MOT16 --seq_id=11
52-
```
53-
This will run a simplified example where a tracker processes artificially corrupted ground-truth bounding boxes from sequence 11; you can preview the expected results in the beginning of the README file.
76+
1. Download MOT16 dataset from `https://motchallenge.net/data/MOT16/` and extract to `~/Downloads/MOT16` directory,
77+
2. Type the command:
78+
```bash
79+
python examples/mot16_challange.py --dataset_root=~/Downloads/MOT16 --seq_id=11
80+
```
81+
This will run a simplified example where a tracker processes artificially corrupted ground-truth bounding boxes from sequence 11; you can preview the expected results in the beginning of the README file.
5482

5583
### Face tracking on webcam
5684

5785
Run the following command to start tracking your own face.
86+
5887
```bash
5988
python examples/webcam_face_tracking.py
6089
```
@@ -104,26 +133,30 @@ model_spec = {
104133
'r_var_pos': 0.1 # measurement noise
105134
}
106135
107-
tracker = MultiObjectTracker(dt=1 / 10, model_spec=model_spec)
136+
tracker = MultiObjectTracker(dt=0.1, model_spec=model_spec)
108137
```
109138
110139
The simplification used here is that the object position and size can be treated and modeled independently; hence you can use even 2D bounding boxes in 3D space.
111140
112141
Feel free to tune the parameter of Q and R matrix builders to better fit your use case.
113142
114143
## Tested platforms
115-
- Linux (Ubuntu)
116-
- macOS (Catalina)
117-
- Raspberry Pi (4)
144+
145+
- Linux (Ubuntu)
146+
- macOS (Catalina)
147+
- Raspberry Pi (4)
118148
119149
## Things to do
120150
121-
- [x] Initial version
122-
- [ ] Documentation
123-
- [ ] Performance optimization
124-
- [ ] Multiple object classes support
151+
- [x] Initial version
152+
- [ ] Documentation
153+
- [ ] Performance optimization
154+
- [x] Multiple object classes support via instance-level class_id counting
155+
- [x] Allow tracking without Kalman filter
156+
- [x] Easy to use and configurable example of video processing with off-the-shelf object detector
125157
126158
## References, papers, ideas and acknowledgements
127-
- https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/
128-
- http://elvera.nue.tu-berlin.de/files/1517Bochinski2017.pdf
129-
- https://arxiv.org/abs/1602.00763
159+
160+
- https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/
161+
- http://elvera.nue.tu-berlin.de/files/1517Bochinski2017.pdf
162+
- https://arxiv.org/abs/1602.00763

assets/2d_multi_object_tracking.gif

-3.93 MB
Binary file not shown.

assets/video.mp4

5.86 MB
Binary file not shown.

examples/2d_multi_object_tracking.py

+18-10
Original file line numberDiff line numberDiff line change
@@ -1,14 +1,21 @@
1+
import time
12

23
import cv2
3-
import motpy
44
from motpy import ModelPreset, MultiObjectTracker
55
from motpy.core import setup_logger
6-
from motpy.testing_viz import draw_rectangle, draw_text, image_generator
6+
from motpy.testing_viz import draw_rectangle, draw_track, image_generator
7+
from motpy.utils import ensure_packages_installed
78

8-
logger = setup_logger(__name__, is_main=True)
9+
ensure_packages_installed(['cv2'])
910

1011

11-
def demo_tracking_visualization(num_steps: int = 1000, num_objects: int = 10):
12+
logger = setup_logger(__name__, 'DEBUG', is_main=True)
13+
14+
15+
def demo_tracking_visualization(
16+
model_spec=ModelPreset.constant_acceleration_and_static_box_size_2d.value,
17+
num_steps: int = 1000,
18+
num_objects: int = 20):
1219
gen = image_generator(
1320
num_steps=num_steps,
1421
num_objects=num_objects,
@@ -20,23 +27,24 @@ def demo_tracking_visualization(num_steps: int = 1000, num_objects: int = 10):
2027
dt = 1 / 24
2128
tracker = MultiObjectTracker(
2229
dt=dt,
23-
model_spec=ModelPreset.constant_acceleration_and_static_box_size_2d.value,
30+
model_spec=model_spec,
2431
active_tracks_kwargs={'min_steps_alive': 2, 'max_staleness': 6},
2532
tracker_kwargs={'max_staleness': 12})
2633

2734
for _ in range(num_steps):
2835
img, _, detections = next(gen)
29-
3036
detections = [d for d in detections if d.box is not None]
37+
38+
t0 = time.time()
3139
active_tracks = tracker.step(detections=detections)
40+
elapsed = (time.time() - t0) * 1000.
41+
logger.debug(f'tracking elapsed time: {elapsed:.3f} ms')
3242

3343
for track in active_tracks:
34-
score = track.score if track.score is not None else -1
35-
img = draw_rectangle(img, track.box, color=(10, 10, 220), thickness=5)
36-
img = draw_text(img, f'{track.id[:8]}... ({score:.2f})', above_box=track.box)
44+
draw_track(img, track)
3745

3846
for det in detections:
39-
img = draw_rectangle(img, det.box, color=(10, 220, 20), thickness=1)
47+
draw_rectangle(img, det.box, color=(10, 220, 20), thickness=1)
4048

4149
cv2.imshow('preview', img)
4250
# stop the demo by pressing q

examples/coco_labels.py

+107
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,107 @@
1+
from typing import Sequence
2+
3+
COCO_LABELS = {0: '__background__',
4+
1: 'person',
5+
2: 'bicycle',
6+
3: 'car',
7+
4: 'motorcycle',
8+
5: 'airplane',
9+
6: 'bus',
10+
7: 'train',
11+
8: 'truck',
12+
9: 'boat',
13+
10: 'traffic light',
14+
11: 'fire hydrant',
15+
12: 'stop sign',
16+
13: 'parking meter',
17+
14: 'bench',
18+
15: 'bird',
19+
16: 'cat',
20+
17: 'dog',
21+
18: 'horse',
22+
19: 'sheep',
23+
20: 'cow',
24+
21: 'elephant',
25+
22: 'bear',
26+
23: 'zebra',
27+
24: 'giraffe',
28+
25: 'backpack',
29+
26: 'umbrella',
30+
27: 'handbag',
31+
28: 'tie',
32+
29: 'suitcase',
33+
30: 'frisbee',
34+
31: 'skis',
35+
32: 'snowboard',
36+
33: 'sports ball',
37+
34: 'kite',
38+
35: 'baseball bat',
39+
36: 'baseball glove',
40+
37: 'skateboard',
41+
38: 'surfboard',
42+
39: 'tennis racket',
43+
40: 'bottle',
44+
41: 'wine glass',
45+
42: 'cup',
46+
43: 'fork',
47+
44: 'knife',
48+
45: 'spoon',
49+
46: 'bowl',
50+
47: 'banana',
51+
48: 'apple',
52+
49: 'sandwich',
53+
50: 'orange',
54+
51: 'broccoli',
55+
52: 'carrot',
56+
53: 'hot dog',
57+
54: 'pizza',
58+
55: 'donut',
59+
56: 'cake',
60+
57: 'chair',
61+
58: 'couch',
62+
59: 'potted plant',
63+
60: 'bed',
64+
61: 'dining table',
65+
62: 'toilet',
66+
63: 'tv',
67+
64: 'laptop',
68+
65: 'mouse',
69+
66: 'remote',
70+
67: 'keyboard',
71+
68: 'cell phone',
72+
69: 'microwave',
73+
70: 'oven',
74+
71: 'toaster',
75+
72: 'sink',
76+
73: 'refrigerator',
77+
74: 'book',
78+
75: 'clock',
79+
76: 'vase',
80+
77: 'scissors',
81+
78: 'teddy bear',
82+
79: 'hair drier',
83+
80: 'toothbrush'}
84+
85+
86+
def get_class_ids(labels) -> Sequence[int]:
87+
if len(labels) == 0:
88+
raise ValueError('specify more than one label to detect')
89+
90+
if isinstance(labels[0], int):
91+
for class_id in labels:
92+
if class_id not in COCO_LABELS:
93+
raise ValueError(f'provided unknown COCO class id: {class_id}')
94+
95+
return labels
96+
elif isinstance(labels[0], str):
97+
inv = {v: k for k, v in COCO_LABELS.items()}
98+
class_ids = []
99+
for class_name in labels:
100+
if class_name not in inv:
101+
raise ValueError(f'provided unknown COCO class name: {class_name}')
102+
103+
class_ids.append(inv[class_name])
104+
105+
return class_ids
106+
else:
107+
raise NotImplementedError()

0 commit comments

Comments
 (0)