-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathtrain.py
437 lines (378 loc) · 16.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
"""
created by: Donghyeon Won
Modified codes from
http://pytorch.org/tutorials/beginner/data_loading_tutorial.html
https://github.com/pytorch/examples/tree/master/imagenet
"""
from __future__ import print_function
import os
import argparse
import numpy as np
import pandas as pd
import time
import shutil
from itertools import ifilter
from PIL import Image
from sklearn.metrics import accuracy_score, mean_squared_error
import torch
import torch.nn as nn
import torch.optim
from torch.utils.data import Dataset, DataLoader
from torch.autograd import Variable
import torchvision.transforms as transforms
import torchvision.models as models
from util import ProtestDataset, modified_resnet50, AverageMeter, Lighting
# for indexing output of the model
protest_idx = Variable(torch.LongTensor([0]))
violence_idx = Variable(torch.LongTensor([1]))
visattr_idx = Variable(torch.LongTensor(range(2,12)))
best_loss = float("inf")
def calculate_loss(output, target, criterions, weights = [1, 10, 5]):
"""Calculate loss"""
# number of protest images
N_protest = int(target['protest'].data.sum())
batch_size = len(target['protest'])
if N_protest == 0:
# if no protest image in target
outputs = [None]
# protest output
outputs[0] = output.index_select(1, protest_idx)
targets = [None]
# protest target
targets[0] = target['protest'].float()
losses = [weights[i] * criterions[i](outputs[i], targets[i]) for i in range(1)]
scores = {}
scores['protest_acc'] = accuracy_score((outputs[0]).data.round(), targets[0].data)
scores['violence_mse'] = 0
scores['visattr_acc'] = 0
return losses, scores, N_protest
# used for filling 0 for non-protest images
not_protest_mask = (1 - target['protest']).byte()
outputs = [None] * 4
# protest output
outputs[0] = output.index_select(1, protest_idx)
# violence output
outputs[1] = output.index_select(1, violence_idx)
outputs[1].masked_fill_(not_protest_mask, 0)
# visual attribute output
outputs[2] = output.index_select(1, visattr_idx)
outputs[2].masked_fill_(not_protest_mask.repeat(1, 10),0)
targets = [None] * 4
targets[0] = target['protest'].float()
targets[1] = target['violence'].float()
targets[2] = target['visattr'].float()
scores = {}
# protest accuracy for this batch
scores['protest_acc'] = accuracy_score(outputs[0].data.round(), targets[0].data)
# violence MSE for this batch
scores['violence_mse'] = ((outputs[1].data - targets[1].data).pow(2)).sum() / float(N_protest)
# mean accuracy for visual attribute for this batch
comparison = (outputs[2].data.round() == targets[2].data)
comparison.masked_fill_(not_protest_mask.repeat(1, 10).data,0)
n_right = comparison.float().sum()
mean_acc = n_right / float(N_protest*10)
scores['visattr_acc'] = mean_acc
# return weighted loss
losses = [weights[i] * criterions[i](outputs[i], targets[i]) for i in range(len(criterions))]
return losses, scores, N_protest
def train(train_loader, model, criterions, optimizer, epoch):
"""training the model"""
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
loss_protest = AverageMeter()
loss_v = AverageMeter()
protest_acc = AverageMeter()
violence_mse = AverageMeter()
visattr_acc = AverageMeter()
end = time.time()
loss_history = []
for i, sample in enumerate(train_loader):
# measure data loading batch_time
input, target = sample['image'], sample['label']
data_time.update(time.time() - end)
if args.cuda:
input = input.cuda()
for k, v in target.items():
target[k] = v.cuda()
target_var = {}
for k,v in target.items():
target_var[k] = Variable(v)
input_var = Variable(input)
output = model(input_var)
losses, scores, N_protest = calculate_loss(output, target_var, criterions)
optimizer.zero_grad()
loss = 0
for l in losses:
loss += l
# back prop
loss.backward()
optimizer.step()
if N_protest:
loss_protest.update(losses[0].data[0], input.size(0))
loss_v.update(loss.data[0] - losses[0].data[0], N_protest)
else:
# when there is no protest image in the batch
loss_protest.update(losses[0].data[0], input.size(0))
loss_history.append(loss.data[0])
protest_acc.update(scores['protest_acc'], input.size(0))
violence_mse.update(scores['violence_mse'], N_protest)
visattr_acc.update(scores['visattr_acc'], N_protest)
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}] '
'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) '
'Data {data_time.val:.2f} ({data_time.avg:.2f}) '
'Loss {loss_val:.3f} ({loss_avg:.3f}) '
'Protest {protest_acc.val:.3f} ({protest_acc.avg:.3f}) '
'Violence {violence_mse.val:.5f} ({violence_mse.avg:.5f}) '
'Vis Attr {visattr_acc.val:.3f} ({visattr_acc.avg:.3f})'
.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time,
loss_val=loss_protest.val + loss_v.val,
loss_avg = loss_protest.avg + loss_v.avg,
protest_acc = protest_acc, violence_mse = violence_mse,
visattr_acc = visattr_acc))
return loss_history
def validate(val_loader, model, criterions, epoch):
"""Validating"""
model.eval()
batch_time = AverageMeter()
data_time = AverageMeter()
loss_protest = AverageMeter()
loss_v = AverageMeter()
protest_acc = AverageMeter()
violence_mse = AverageMeter()
visattr_acc = AverageMeter()
end = time.time()
loss_history = []
for i, sample in enumerate(val_loader):
# measure data loading batch_time
input, target = sample['image'], sample['label']
if args.cuda:
input = input.cuda()
for k, v in target.items():
target[k] = v.cuda()
input_var = Variable(input)
target_var = {}
for k,v in target.items():
target_var[k] = Variable(v)
output = model(input_var)
losses, scores, N_protest = calculate_loss(output, target_var, criterions)
loss = 0
for l in losses:
loss += l
if N_protest:
loss_protest.update(losses[0].data[0], input.size(0))
loss_v.update(loss.data[0] - losses[0].data[0], N_protest)
else:
# when no protest images
loss_protest.update(losses[0].data[0], input.size(0))
loss_history.append(loss.data[0])
protest_acc.update(scores['protest_acc'], input.size(0))
violence_mse.update(scores['violence_mse'], N_protest)
visattr_acc.update(scores['visattr_acc'], N_protest)
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) '
'Loss {loss_val:.3f} ({loss_avg:.3f}) '
'Protest Acc {protest_acc.val:.3f} ({protest_acc.avg:.3f}) '
'Violence MSE {violence_mse.val:.5f} ({violence_mse.avg:.5f}) '
'Vis Attr Acc {visattr_acc.val:.3f} ({visattr_acc.avg:.3f})'
.format(
epoch, i, len(val_loader), batch_time=batch_time,
loss_val =loss_protest.val + loss_v.val,
loss_avg = loss_protest.avg + loss_v.avg,
protest_acc = protest_acc,
violence_mse = violence_mse, visattr_acc = visattr_acc))
print(' * Loss {loss_avg:.3f} Protest Acc {protest_acc.avg:.3f} '
'Violence MSE {violence_mse.avg:.5f} '
'Vis Attr Acc {visattr_acc.avg:.3f} '
.format(loss_avg = loss_protest.avg + loss_v.avg,
protest_acc = protest_acc,
violence_mse = violence_mse, visattr_acc = visattr_acc))
return loss_protest.avg + loss_v.avg, loss_history
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 0.5 every 5 epochs"""
lr = args.lr * (0.4 ** (epoch // 4))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
"""Save checkpoints"""
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
def main():
global best_loss
loss_history_train = []
loss_history_val = []
data_dir = args.data_dir
img_dir_train = os.path.join(data_dir, "img/train")
img_dir_val = os.path.join(data_dir, "img/test")
txt_file_train = os.path.join(data_dir, "annot_train.txt")
txt_file_val = os.path.join(data_dir, "annot_test.txt")
# load pretrained resnet50 with a modified last fully connected layer
model = modified_resnet50()
# we need three different criterion for training
criterion_protest = nn.BCELoss()
criterion_violence = nn.MSELoss()
criterion_visattr = nn.BCELoss()
criterions = [criterion_protest, criterion_violence, criterion_visattr]
if args.cuda and not torch.cuda.is_available():
raise Exception("No GPU Found")
if args.cuda:
model = model.cuda()
criterions = [criterion.cuda() for criterion in criterions]
# we are not training the frozen layers
parameters = ifilter(lambda p: p.requires_grad, model.parameters())
optimizer = torch.optim.SGD(
parameters, args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay
)
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_loss = checkpoint['best_loss']
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
loss_history_train = checkpoint['loss_history_train']
loss_history_val = checkpoint['loss_history_val']
if args.change_lr:
for param_group in optimizer.param_groups:
param_group['lr'] = args.lr
else:
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
eigval = torch.Tensor([0.2175, 0.0188, 0.0045])
eigvec = torch.Tensor([[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203]])
train_dataset = ProtestDataset(
txt_file = txt_file_train,
img_dir = img_dir_train,
transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomRotation(30),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(
brightness = 0.4,
contrast = 0.4,
saturation = 0.4,
),
transforms.ToTensor(),
Lighting(0.1, eigval, eigvec),
normalize,
]))
val_dataset = ProtestDataset(
txt_file = txt_file_val,
img_dir = img_dir_val,
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
train_loader = DataLoader(
train_dataset,
num_workers = args.workers,
batch_size = args.batch_size,
shuffle = True
)
val_loader = DataLoader(
val_dataset,
num_workers = args.workers,
batch_size = args.batch_size)
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch)
loss_history_train_this = train(train_loader, model, criterions,
optimizer, epoch)
loss_val, loss_history_val_this = validate(val_loader, model,
criterions, epoch)
loss_history_train.append(loss_history_train_this)
loss_history_val.append(loss_history_val_this)
# loss = loss_val.avg
is_best = loss_val < best_loss
if is_best:
print('best model!!')
best_loss = min(loss_val, best_loss)
save_checkpoint({
'epoch' : epoch + 1,
'state_dict' : model.state_dict(),
'best_loss' : best_loss,
'optimizer' : optimizer.state_dict(),
'loss_history_train': loss_history_train,
'loss_history_val': loss_history_val
}, is_best)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir",
type=str,
default = "UCLA-protest",
help = "directory path to UCLA-protest",
)
parser.add_argument("--cuda",
action = "store_true",
help = "use cuda?",
)
parser.add_argument("--workers",
type = int,
default = 4,
help = "number of workers",
)
parser.add_argument("--batch_size",
type = int,
default = 8,
help = "batch size",
)
parser.add_argument("--epochs",
type = int,
default = 100,
help = "number of epochs",
)
parser.add_argument("--weight_decay",
type = float,
default = 1e-4,
help = "weight decay",
)
parser.add_argument("--lr",
type = float,
default = 0.01,
help = "learning rate",
)
parser.add_argument("--momentum",
type = float,
default = 0.9,
help = "momentum",
)
parser.add_argument("--print_freq",
type = int,
default = 10,
help = "print frequency",
)
parser.add_argument('--resume',
default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--change_lr',
action = "store_true",
help = "Use this if you want to \
change learning rate when resuming")
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
args = parser.parse_args()
if args.cuda:
protest_idx = protest_idx.cuda()
violence_idx = violence_idx.cuda()
visattr_idx = visattr_idx.cuda()
main()