-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
362 lines (309 loc) · 15.5 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import glob
import pickle
import cv2
import numpy as np
import os
import matplotlib.pyplot as plt
from moviepy.editor import VideoFileClip
from collections import deque
nx = 9
ny = 6
c_thresh=(170, 255)
s_thresh=(200, 255)
dir_thresh=(0.7, 1.1)
ym_per_pix = 3.0/72.0 # meters per pixel in y dimension
xm_per_pix = 3.7/660.0 # meters per pixel in x dimension
y_eval = 700
midx = 650
TEST_IMAGES = True
def calibrate_camera():
objpoints = []
imgpoints = []
objp = np.zeros((nx*ny,3), np.float32)
objp[:,:2] = np.mgrid[0:nx,0:ny].T.reshape(-1, 2)
for filename in glob.iglob('camera_cal/*.jpg'):
# Read image
img = cv2.imread(filename)
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Find the chessboard corners
ret, corners = cv2.findChessboardCorners(gray, (nx, ny), None)
if ret == True:
objpoints.append(objp)
imgpoints.append(corners)
cv2.drawChessboardCorners(img, (nx, ny), corners, ret)
cv2.imwrite("output_images/{}".format(filename), img)
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None)
for filename in glob.iglob('output_images/camera_cal/*.jpg'):
img = cv2.imread(filename)
dst = cv2.undistort(img, mtx, dist, None, mtx)
cv2.imwrite("{}-undistorted.jpg".format(filename), dst)
return mtx, dist
def undistort(img, mtx, dist):
dst = cv2.undistort(img, mtx, dist, None, mtx)
return dst
def convert_binary(img):
g_channel = img[:,:,1]
cv2.imwrite('output_images/test4-green-channel.jpg', g_channel)
g_binary = np.zeros_like(g_channel)
g_binary[(g_channel >= c_thresh[0]) & (g_channel < c_thresh[1])] = 255
cv2.imwrite('output_images/test4-green-channel-threshold.jpg', g_binary)
# Convert to HLS color space and separate the S channel
hls = cv2.cvtColor(img, cv2.COLOR_BGR2HLS).astype(np.float)
s_channel = hls[:,:,2]
cv2.imwrite('output_images/test4-s-channel.jpg', s_channel)
s_binary = np.zeros_like(s_channel, dtype=np.uint8)
s_binary[(s_channel >= s_thresh[0]) & (s_channel <= s_thresh[1])] = 255
cv2.imwrite('output_images/test4-s-channel-threshold.jpg', s_binary)
# Sobel gray
color = np.copy(img)
gray = cv2.cvtColor(color, cv2.COLOR_BGR2GRAY)
cv2.imwrite('output_images/test4-gray.jpg', gray)
sobel_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
abs_sobelx = np.absolute(sobel_x)
scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx))
cv2.imwrite('output_images/test4-sobel-x.jpg', scaled_sobel)
sxbinary = np.zeros_like(scaled_sobel, dtype=np.uint8)
sxbinary[(scaled_sobel >= 10) & (scaled_sobel <= 70)] = 255
cv2.imwrite('output_images/test4-sobel-x-threshold.jpg', sxbinary)
color_binary = np.dstack(( sxbinary, s_binary, g_binary)).astype("uint8")
gray_binary = np.zeros_like(g_binary).astype("uint8")
BIN_THRESH = 255
gray_binary[((g_binary >= BIN_THRESH) & (s_binary >= BIN_THRESH)) | ((g_binary >= BIN_THRESH) & (sxbinary >= BIN_THRESH)) | ((s_binary >= BIN_THRESH) & (sxbinary >= BIN_THRESH))] = 255
return color_binary, gray_binary
def perspective_warp(img):
img_size = (img.shape[1], img.shape[0])
width, height = img_size
offset = 200
src = np.float32([
[ 586, 446 ],
[ 713, 446 ],
[ 1119, 683 ],
[ 254 , 683 ]])
dst = np.float32([[offset, 0], [img_size[0] - offset, 0], [img_size[0] - offset, img_size[1]], [offset, img_size[1]]])
M = cv2.getPerspectiveTransform(src,dst)
Minv = cv2.getPerspectiveTransform(dst, src)
warped = cv2.warpPerspective(img, M, (width, height))
return warped, Minv
# # Define a class to receive the characteristics of each line detection
class Line():
def __init__(self):
# was the line detected in the last iteration?
self.detected = False
# x values of the last n fits of the line
self.recent_xfitted = []
#average x values of the fitted line over the last n iterations
self.bestx = None
#polynomial coefficients averaged over the last n iterations
self.best_fit = None
#polynomial coefficients for the most recent fit
self.current_fit = deque(maxlen=5)
#radius of curvature of the line in some units
self.radius_of_curvature = None
#distance in meters of vehicle center from the line
self.line_base_pos = None
#difference in fit coefficients between last and new fits
self.diffs = np.array([0,0,0], dtype='float')
#x values for detected line pixels
self.allx = None
#y values for detected line pixels
self.ally = None
left_lane = Line()
right_lane = Line()
#lane_widths = deque(maxlen=10)
def refit_histogram(binary_warped, name=None):
# Take a histogram of the bottom half of the image
histogram = np.sum(binary_warped[int(binary_warped.shape[0]/2):,:], axis=0)
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# Choose the number of sliding windows
nwindows = 9
# Set height of windows
window_height = np.int(binary_warped.shape[0]/nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
if name is not None:
# Create an output image to draw on and visualize the result
out_img = np.dstack((binary_warped, binary_warped, binary_warped))
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
if name is not None:
# Draw the windows on the visualization image
cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),(0,255,0), 2)
cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),(0,255,0), 2)
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Generate x and y values for plotting
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
distance = np.mean(right_fitx - left_fitx)
if distance < 600 or distance > 700:
invalid = True
else:
invalid = False
if name is not None:
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
plt.clf()
plt.imshow(out_img)
plt.plot(left_fitx, ploty, color='yellow')
plt.plot(right_fitx, ploty, color='yellow')
plt.xlim(0, 1280)
plt.ylim(720, 0)
plt.savefig("output_images/{}-4-histogram-fit.jpg".format(name))
y1 = (2*left_fit[0]*y_eval + left_fit[1])*xm_per_pix/ym_per_pix
y2 = 2*left_fit[0]*xm_per_pix/(ym_per_pix*ym_per_pix)
curvature = ((1 + y1*y1)**(1.5))/np.absolute(y2)
return left_fit, right_fit, curvature, invalid
def fit_histogram(binary_warped, name=None):
if left_lane.detected and right_lane.detected:
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
margin = 100
left_lane_inds = ((nonzerox > (left_lane.best_fit[0]*(nonzeroy**2) + left_lane.best_fit[1]*nonzeroy + left_lane.best_fit[2] - margin)) & (nonzerox < (left_lane.best_fit[0]*(nonzeroy**2) + left_lane.best_fit[1]*nonzeroy + left_lane.best_fit[2] + margin)))
right_lane_inds = ((nonzerox > (right_lane.best_fit[0]*(nonzeroy**2) + right_lane.best_fit[1]*nonzeroy + right_lane.best_fit[2] - margin)) & (nonzerox < (right_lane.best_fit[0]*(nonzeroy**2) + right_lane.best_fit[1]*nonzeroy + right_lane.best_fit[2] + margin)))
# Again, extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Generate x and y values for plotting
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
width_ratio = (right_fitx[-1] - left_fitx[-1]) / (right_fitx[0] - left_fitx[0])
l_y1 = (2*left_fit[0]*y_eval + left_fit[1])*xm_per_pix/ym_per_pix
l_y2 = 2*left_fit[0]*xm_per_pix/(ym_per_pix*ym_per_pix)
l_curvature = ((1 + l_y1*l_y1)**(1.5))/np.absolute(l_y2)
if width_ratio > 0.9 and width_ratio < 1.1:
left_lane.current_fit.append(left_fit)
right_lane.current_fit.append(right_fit)
left_lane.radius_of_curvature = l_curvature
right_lane.radius_of_curvature = l_curvature
left_lane.best_fit = np.mean(left_lane.current_fit, axis=0)
right_lane.best_fit = np.mean(right_lane.current_fit, axis=0)
else:
left_lane.detected = False
right_lane.detected = False
else:
left_fit, right_fit, curvature, invalid = refit_histogram(binary_warped, name)
if not invalid:
left_lane.current_fit.append(left_fit)
right_lane.current_fit.append(right_fit)
left_lane.radius_of_curvature = curvature
right_lane.radius_of_curvature = curvature
if not TEST_IMAGES:
left_lane.detected = True
right_lane.detected = True
left_lane.best_fit = np.mean(left_lane.current_fit, axis=0)
right_lane.best_fit = np.mean(right_lane.current_fit, axis=0)
return left_lane.best_fit, right_lane.best_fit, left_lane.radius_of_curvature
def plot_lanes(binary_warped, undistorted_img, Minv, left_fit, right_fit, curvature):
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
warp_zero = np.zeros_like(binary_warped).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))
newwarp = cv2.warpPerspective(color_warp, Minv, (undistorted_img.shape[1], undistorted_img.shape[0]))
# Combine the result with the original image
result = cv2.addWeighted(undistorted_img, 1, newwarp, 0.3, 0)
cv2.putText(result,'Radius of Curvature: %.2fm' % curvature,(20,40), cv2.FONT_HERSHEY_SIMPLEX, 1,(255,255,255),2)
x_left_pix = left_fit[0]*(y_eval**2) + left_fit[1]*y_eval + left_fit[2]
x_right_pix = right_fit[0]*(y_eval**2) + right_fit[1]*y_eval + right_fit[2]
position_from_center = ((x_left_pix + x_right_pix)/2 - midx) * xm_per_pix
if position_from_center < 0:
text = 'left'
else:
text = 'right'
cv2.putText(result,'Distance From Center: %.2fm %s' % (np.absolute(position_from_center), text),(20,80), cv2.FONT_HERSHEY_SIMPLEX, 1,(255,255,255),2)
return result
def process_image(img):
dst = undistort(img, mtx, dist)
c_binary, g_binary = convert_binary(dst)
warped, Minv = perspective_warp(g_binary)
left_fit, right_fit, curvature = fit_histogram(warped)
return plot_lanes(warped, dst, Minv, left_fit, right_fit, curvature)
try:
calibration = pickle.load(open("calibration.pkl", "rb"))
mtx = calibration["mtx"]
dist = calibration["dist"]
except (OSError, IOError) as e:
mtx, dist = calibrate_camera()
calibration = {"mtx":mtx, "dist":dist}
pickle.dump(calibration, open("calibration.pkl", "wb"))
if TEST_IMAGES:
left_lane.current_fit = deque(maxlen=1)
right_lane.current_fit = deque(maxlen=1)
for filename in glob.iglob('test_images/*.jpg'):
if filename == 'test_images/test4.jpg':
img = cv2.imread(filename)
dst = undistort(img, mtx, dist)
name = os.path.splitext(os.path.basename(filename))[0]
cv2.imwrite("output_images/{}-0-undistorted.jpg".format(name), dst)
c_binary, g_binary = convert_binary(dst)
cv2.imwrite("output_images/{}-1-color_binary.jpg".format(name), c_binary)
cv2.imwrite("output_images/{}-2-gray_binary.jpg".format(name), g_binary)
warped, Minv = perspective_warp(g_binary)
cv2.imwrite("output_images/{}-3-perspective.jpg".format(name), warped)
left_fit, right_fit, curvature = fit_histogram(warped, name)
result = plot_lanes(warped, dst, Minv, left_fit, right_fit, curvature)
cv2.imwrite("output_images/{}-5-final.jpg".format(name), result)
else:
left_lane.current_fit = deque(maxlen=5)
right_lane.current_fit = deque(maxlen=5)
print('Processing video ...')
clip2 = VideoFileClip("project_video.mp4")
vid_clip = clip2.fl_image(process_image)
vid_clip.write_videofile("output_images/project.mp4", audio=False)