-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess.py
414 lines (365 loc) · 17.4 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import glob
import numpy as np
import cv2
import pickle
import os
import h5py
import random
PROCESS_TEST_IMAGES = False
DO_TRAIN = False
DO_GRID_SEARCH = False
from skimage.feature import hog
import time
from sklearn import svm
from sklearn.preprocessing import StandardScaler
from skimage.feature import hog
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.externals import joblib
from moviepy.editor import VideoFileClip
from collections import deque
from scipy.ndimage.measurements import label
# Define a function to return HOG features and visualization
def get_hog_features(img, orient, pix_per_cell, cell_per_block,
vis=False, feature_vec=True):
# Call with two outputs if vis==True
if vis == True:
features, hog_image = hog(img, orientations=orient,
pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block),
transform_sqrt=True,
visualise=vis, feature_vector=feature_vec)
return features, hog_image
# Otherwise call with one output
else:
features = hog(img, orientations=orient,
pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block),
transform_sqrt=True,
visualise=vis, feature_vector=feature_vec)
return features
# Define a function to compute binned color features
def bin_spatial(img, size=(32, 32)):
# Use cv2.resize().ravel() to create the feature vector
features = cv2.resize(img, size).ravel()
# Return the feature vector
return features
# Define a function to compute color histogram features
# NEED TO CHANGE bins_range if reading .png files with mpimg!
def color_hist(img, nbins=32, bins_range=(0, 256)):
# Compute the histogram of the color channels separately
channel1_hist = np.histogram(img[:,:,0], bins=nbins, range=bins_range)
channel2_hist = np.histogram(img[:,:,1], bins=nbins, range=bins_range)
channel3_hist = np.histogram(img[:,:,2], bins=nbins, range=bins_range)
# Concatenate the histograms into a single feature vector
hist_features = np.concatenate((channel1_hist[0], channel2_hist[0], channel3_hist[0]))
# Return the individual histograms, bin_centers and feature vector
return hist_features
# Define a function to extract features from a list of images
# Have this function call bin_spatial() and color_hist()
def extract_features(imgs, color_space='RGB', spatial_size=(32, 32),
hist_bins=32, orient=9,
pix_per_cell=8, cell_per_block=2, hog_channel=0,
spatial_feat=True, hist_feat=True, hog_feat=True):
# Create a list to append feature vectors to
features = []
# Iterate through the list of images
for file in imgs:
file_features = []
# Read in each one by one
image = cv2.imread(file)
# apply color conversion if other than 'RGB'
if color_space != 'RGB':
if color_space == 'HSV':
feature_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
elif color_space == 'LUV':
feature_image = cv2.cvtColor(image, cv2.COLOR_BGR2LUV)
elif color_space == 'HLS':
feature_image = cv2.cvtColor(image, cv2.COLOR_BGR2HLS)
elif color_space == 'YUV':
feature_image = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)
elif color_space == 'YCrCb':
feature_image = cv2.cvtColor(image, cv2.COLOR_BGR2YCrCb)
else: feature_image = np.copy(image)
if spatial_feat == True:
spatial_features = bin_spatial(feature_image, size=spatial_size)
file_features.append(spatial_features)
if hist_feat == True:
# Apply color_hist()
hist_features = color_hist(feature_image, nbins=hist_bins)
file_features.append(hist_features)
if hog_feat == True:
# Call get_hog_features() with vis=False, feature_vec=True
if hog_channel == 'ALL':
hog_features = []
for channel in range(feature_image.shape[2]):
hog_features.append(get_hog_features(feature_image[:,:,channel],
orient, pix_per_cell, cell_per_block,
vis=False, feature_vec=True))
hog_features = np.ravel(hog_features)
else:
hog_features = get_hog_features(feature_image[:,:,hog_channel], orient,
pix_per_cell, cell_per_block, vis=False, feature_vec=True)
# Append the new feature vector to the features list
file_features.append(hog_features)
features.append(np.concatenate(file_features))
# Return list of feature vectors
return features
if DO_TRAIN:
color_space = 'YCrCb' # Can be RGB, HSV, LUV, HLS, YUV, YCrCb
orient = 9 # HOG orientations
pix_per_cell = 8 # HOG pixels per cell
cell_per_block = 2 # HOG cells per block
hog_channel = 0 # Can be 0, 1, 2, or "ALL"
spatial_size = (64, 64) # Spatial binning dimensions
hist_bins = 64 # Number of histogram bins
spatial_feat = True # Spatial features on or off
hist_feat = True # Histogram features on or off
hog_feat = True # HOG features on or off
# Read in cars and notcars
cars = glob.glob('training/vehicles/**/*.png', recursive=True)
notcars = glob.glob('training/non-vehicles/**/*.png', recursive=True)
print("cars = {}, notcars = {}".format(len(cars), len(notcars)))
print("extracting car features...")
car_features = extract_features(cars, color_space=color_space,
spatial_size=spatial_size, hist_bins=hist_bins,
orient=orient, pix_per_cell=pix_per_cell,
cell_per_block=cell_per_block,
hog_channel=hog_channel, spatial_feat=spatial_feat,
hist_feat=hist_feat, hog_feat=hog_feat)
print("extracting non-car features...")
notcar_features = extract_features(notcars, color_space=color_space,
spatial_size=spatial_size, hist_bins=hist_bins,
orient=orient, pix_per_cell=pix_per_cell,
cell_per_block=cell_per_block,
hog_channel=hog_channel, spatial_feat=spatial_feat,
hist_feat=hist_feat, hog_feat=hog_feat)
print("normalizing and splitting...")
X = np.vstack((car_features, notcar_features)).astype(np.float64)
# Fit a per-column scaler
X_scaler = StandardScaler().fit(X)
# Apply the scaler to X
scaled_X = X_scaler.transform(X)
# Define the labels vector
y = np.hstack((np.ones(len(car_features)), np.zeros(len(notcar_features))))
# Split up data into randomized training and test sets
rand_state = np.random.randint(0, 100)
X_train, X_test, y_train, y_test = train_test_split(scaled_X, y, test_size=0.2, random_state=rand_state)
print('Using:',orient,'orientations',pix_per_cell,
'pixels per cell and', cell_per_block,'cells per block')
print('Feature vector length:', len(X_train[0]))
if DO_GRID_SEARCH:
# Use a linear SVC
svr = svm.SVC()
# Grid search
parameters = {'kernel':('linear', 'rbf'), 'C':[0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000]}
svc = GridSearchCV(svr, parameters, n_jobs=25, verbose=100)
# Check the training time for the SVC
t=time.time()
svc.fit(X_train, y_train)
t2 = time.time()
print(round(t2-t, 2), 'Seconds to train SVC...')
else:
svc = svm.SVC(C=1.0, kernel='rbf')
t=time.time()
svc.fit(X_train, y_train)
t2 = time.time()
print(round(t2-t, 2), 'Seconds to train SVC...')
# Check the score of the SVC
print('Test Accuracy of SVC = ', round(svc.score(X_test, y_test), 4))
with open("parameters.pkl","wb") as param_file:
pickle.dump(svc, param_file)
pickle.dump(color_space, param_file)
pickle.dump(orient, param_file)
pickle.dump(pix_per_cell, param_file)
pickle.dump(cell_per_block, param_file)
pickle.dump(hog_channel, param_file)
pickle.dump(spatial_size, param_file)
pickle.dump(hist_bins, param_file)
pickle.dump(spatial_feat, param_file)
pickle.dump(hist_feat, param_file)
pickle.dump(hog_feat, param_file)
pickle.dump(X_scaler, param_file)
param_file.close()
# # Define a single function that can extract features using hog sub-sampling and make predictions
def find_cars(img, color_space, xstart, xstop, ystart, ystop, scale, hog_channel,
spatial_feat, hist_feat, hog_feat, svc, X_scaler,
orient, pix_per_cell, cell_per_block, spatial_size, hist_bins):
draw_img = np.copy(img)
img_tosearch = draw_img[ystart:ystop,xstart:xstop,:]
if color_space != 'RGB':
if color_space == 'HSV':
feature_image = cv2.cvtColor(img_tosearch, cv2.COLOR_BGR2HSV)
elif color_space == 'LUV':
feature_image = cv2.cvtColor(img_tosearch, cv2.COLOR_BGR2LUV)
elif color_space == 'HLS':
feature_image = cv2.cvtColor(img_tosearch, cv2.COLOR_BGR2HLS)
elif color_space == 'YUV':
feature_image = cv2.cvtColor(img_tosearch, cv2.COLOR_BGR2YUV)
elif color_space == 'YCrCb':
feature_image = cv2.cvtColor(img_tosearch, cv2.COLOR_BGR2YCrCb)
else: feature_image = np.copy(img_tosearch)
if scale != 1:
imshape = feature_image.shape
feature_image = cv2.resize(feature_image, (np.int(imshape[1]/scale), np.int(imshape[0]/scale)))
# Define blocks and steps as above
nxblocks = (feature_image.shape[1] // pix_per_cell) - cell_per_block + 1
nyblocks = (feature_image.shape[0] // pix_per_cell) - cell_per_block + 1
nfeat_per_block = orient*cell_per_block**2
# 64 was the orginal sampling rate, with 8 cells and 8 pix per cell
window = 64
nblocks_per_window = (window // pix_per_cell) - cell_per_block + 1
cells_per_step = 2 # Instead of overlap, define how many cells to step
nxsteps = (nxblocks - nblocks_per_window) // cells_per_step
nysteps = (nyblocks - nblocks_per_window) // cells_per_step
if hog_feat == True:
if hog_channel == 'ALL':
full_hog_features = []
for channel in range(feature_image.shape[2]):
full_hog_features.append(get_hog_features(feature_image[:,:,channel],
orient, pix_per_cell, cell_per_block,
vis=False, feature_vec=False))
else:
full_hog_features = get_hog_features(feature_image[:,:,hog_channel], orient,
pix_per_cell, cell_per_block, vis=False, feature_vec=False)
found_cars = []
for xb in range(nxsteps):
for yb in range(nysteps):
window_features = []
ypos = yb*cells_per_step
xpos = xb*cells_per_step
xleft = xpos*pix_per_cell
ytop = ypos*pix_per_cell
subimg = cv2.resize(feature_image[ytop:ytop+window, xleft:xleft+window], (64,64))
if spatial_feat == True:
spatial_features = bin_spatial(subimg, size=spatial_size)
window_features.append(spatial_features)
if hist_feat == True:
hist_features = color_hist(subimg, nbins=hist_bins)
window_features.append(hist_features)
# Extract HOG for this patch
if hog_feat == True:
if hog_channel =='ALL':
hog_features = []
for channel in range(feature_image.shape[2]):
hog_features.append(full_hog_features[channel][ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel())
hog_features = np.hstack((hog_features))
else:
hog_features = full_hog_features[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()
window_features.append(hog_features)
window_features = X_scaler.transform(np.hstack((window_features)).reshape(1, -1))
test_prediction = svc.predict(window_features)
xbox_left = np.int(xleft*scale) + xstart
ybox_top = np.int(ytop*scale) + ystart
win_draw = np.int(window*scale)
if test_prediction == 1:
found_cars.append(((xbox_left, ybox_top), (xbox_left+win_draw, ybox_top+win_draw)))
return found_cars
print("Loading parameters...")
with open("parameters.pkl","rb") as param_file:
svc = pickle.load(param_file)
color_space = pickle.load(param_file)
orient = pickle.load(param_file)
pix_per_cell = pickle.load(param_file)
cell_per_block = pickle.load(param_file)
hog_channel = pickle.load(param_file)
spatial_size = pickle.load(param_file)
hist_bins = pickle.load(param_file)
spatial_feat = pickle.load(param_file)
hist_feat = pickle.load(param_file)
hog_feat = pickle.load(param_file)
X_scaler = pickle.load(param_file)
param_file.close()
print("Using parameters: {}".format(svc.get_params()))
heatmap_threashold = 10
box_queue = deque(maxlen=heatmap_threashold)
def update_heatmap(img):
heatmap = np.zeros_like(img[:,:,0]).astype(np.float)
for boxes in box_queue:
# Iterate through list of bboxes
for box in boxes:
# Add += 1 for all pixels inside each bbox
# Assuming each "box" takes the form ((x1, y1), (x2, y2))
heatmap[box[0][1]:box[1][1], box[0][0]:box[1][0]] += 1
# Return updated heatmap
return heatmap# Iterate through list of bboxes
def apply_threshold(heatmap, threshold):
# Zero out pixels below the threshold
heatmap[heatmap <= threshold] = 0
# Return thresholded map
return heatmap
def draw_labeled_bboxes(img, labels):
# Iterate through all detected cars
for car_number in range(1, labels[1]+1):
# Find pixels with each car_number label value
nonzero = (labels[0] == car_number).nonzero()
# Identify x and y values of those pixels
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Define a bounding box based on min/max x and y
bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox), np.max(nonzeroy)))
# Draw the box on the image
cv2.rectangle(img, bbox[0], bbox[1], (0,0,255), 6)
# Return the image
return img
def process_image(img):
if PROCESS_TEST_IMAGES == False:
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
all_cars = []
xstart = 535
xstop = 1279
ystart = 405
ystop = 485
scale = 1
all_cars.extend(find_cars(img, color_space, xstart, xstop, ystart, ystop, scale, hog_channel,
spatial_feat, hist_feat, hog_feat, svc, X_scaler,
orient, pix_per_cell, cell_per_block, spatial_size, hist_bins))
xstart = 479
xstop = 1279
ystart = 428
ystop = 553
scale = 1.5625
all_cars.extend(find_cars(img, color_space, xstart, xstop, ystart, ystop, scale, hog_channel,
spatial_feat, hist_feat, hog_feat, svc, X_scaler,
orient, pix_per_cell, cell_per_block, spatial_size, hist_bins))
xstart = 559
xstop = 1279
ystart = 386
ystop = 566
scale = 2.25
all_cars.extend(find_cars(img, color_space, xstart, xstop, ystart, ystop, scale, hog_channel,
spatial_feat, hist_feat, hog_feat, svc, X_scaler,
orient, pix_per_cell, cell_per_block, spatial_size, hist_bins))
xstart = 767
xstop = 1279
ystart = 374
ystop = 694
scale = 4
all_cars.extend(find_cars(img, color_space, xstart, xstop, ystart, ystop, scale, hog_channel,
spatial_feat, hist_feat, hog_feat, svc, X_scaler,
orient, pix_per_cell, cell_per_block, spatial_size, hist_bins))
if PROCESS_TEST_IMAGES == False:
box_queue.append(all_cars)
heatmap = update_heatmap(img)
heatmap = apply_threshold(heatmap, heatmap_threashold)
labels = label(heatmap)
draw_img = draw_labeled_bboxes(np.copy(img), labels)
draw_img = cv2.cvtColor(draw_img, cv2.COLOR_BGR2RGB)
else:
draw_img = np.copy(img)
for bbox in all_cars:
cv2.rectangle(draw_img, bbox[0], bbox[1], (255,0,0), 1)
return draw_img
if PROCESS_TEST_IMAGES:
for filename in glob.glob('test_images/*.jpg'):
print(filename)
img = cv2.imread(filename)
out_img = process_image(img)
# out_img = find_cars(img, color_space, ystart, ystop, scale, hog_channel,
# spatial_feat, hist_feat, hog_feat, svc, X_scaler,
# orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
cv2.imwrite('output_images/{}'.format(os.path.basename(filename)), out_img)
else:
clip2 = VideoFileClip("project_video.mp4")
vid_clip = clip2.fl_image(process_image)
vid_clip.write_videofile("output_videos/project_video.mp4", audio=False)