forked from aldringsvitenskap/epigeneticclock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStepwiseAnalysis.R
195 lines (149 loc) · 6.47 KB
/
StepwiseAnalysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Steve Horvath: Estimating DNAm age.
# This file assumes a data frame exists called dat1 whose rows correspond to CpGs
# and whose first column reports the CpG identifier
# and whose remaining columns corresponds to samples (e.g. Illumina arrays).
fastImputation = FALSE
#STEP 1: DEFINE QUALITY METRICS
meanMethBySample = as.numeric(apply(as.matrix(dat1[, -1]), 2, mean, na.rm =
TRUE))
minMethBySample = as.numeric(apply(as.matrix(dat1[, -1]), 2, min, na.rm =
TRUE))
maxMethBySample = as.numeric(apply(as.matrix(dat1[, -1]), 2, max, na.rm =
TRUE))
datMethUsed = t(dat1[, -1])
colnames(datMethUsed) = as.character(dat1[, 1])
noMissingPerSample = apply(as.matrix(is.na(datMethUsed)), 1, sum)
table(noMissingPerSample)
#STEP 2: Imputing
if (!fastImputation &
nSamples > 1 & max(noMissingPerSample, na.rm = TRUE) < 3000) {
# run the following code if there is at least one missing
if (max(noMissingPerSample, na.rm = TRUE) > 0) {
dimnames1 = dimnames(datMethUsed)
datMethUsed = data.frame(t(impute.knn(t(datMethUsed))$data))
dimnames(datMethUsed) = dimnames1
} # end of if
} # end of if (! fastImputation )
if (max(noMissingPerSample, na.rm = TRUE) >= 3000)
fastImputation = TRUE
if (fastImputation | nSamples == 1) {
noMissingPerSample = apply(as.matrix(is.na(datMethUsed)), 1, sum)
table(noMissingPerSample)
if (max(noMissingPerSample, na.rm = TRUE) > 0 &
max(noMissingPerSample, na.rm = TRUE) >= 3000) {
normalizeData = FALSE
}
# run the following code if there is at least one missing
if (max(noMissingPerSample, na.rm = TRUE) > 0 &
max(noMissingPerSample, na.rm = TRUE) < 3000) {
dimnames1 = dimnames(datMethUsed)
for (i in which(noMissingPerSample > 0)) {
selectMissing1 = is.na(datMethUsed[i, ])
datMethUsed[i, selectMissing1] = as.numeric(probeAnnotation21kdatMethUsed$goldstandard2[selectMissing1])
} # end of for loop
dimnames(datMethUsed) = dimnames1
} # end of if
} # end of if (! fastImputation )
# STEP 3: Data normalization (each sample requires about 8 seconds). It would be straightforward to parallelize this operation.
if (normalizeData) {
datMethUsedNormalized = BMIQcalibration(
datM = datMethUsed,
goldstandard.beta = probeAnnotation21kdatMethUsed$goldstandard2,
plots = FALSE
)
}
if (!normalizeData) {
datMethUsedNormalized = datMethUsed
}
rm(datMethUsed)
gc()
#STEP 4: Predict age and create a data frame for the output (referred to as datout)
selectCpGsClock = is.element(dimnames(datMethUsedNormalized)[[2]],
as.character(datClock$CpGmarker[-1]))
if (sum(selectCpGsClock) < dim(datClock)[[1]] - 1) {
stop(
"The CpGs listed in column 1 of the input data did not contain the CpGs needed for calculating DNAm age. Make sure to input cg numbers such as cg00075967."
)
}
if (sum(selectCpGsClock) > dim(datClock)[[1]] - 1) {
stop(
"ERROR: The CpGs listed in column 1 of the input data contain duplicate CpGs. Each row should report only one unique CpG marker (cg number)."
)
}
if (nSamples > 1) {
datMethClock0 = data.frame(datMethUsedNormalized[, selectCpGsClock])
datMethClock = data.frame(datMethClock0[as.character(datClock$CpGmarker[-1])])
dim(datMethClock)
predictedAge = as.numeric(anti.trafo(
datClock$CoefficientTraining[1] + as.matrix(datMethClock) %*% as.numeric(datClock$CoefficientTraining[-1])
))
} # end of if
if (nSamples == 1) {
datMethUsedNormalized2 = data.frame(rbind(datMethUsedNormalized, datMethUsedNormalized))
datMethClock0 = data.frame(datMethUsedNormalized2[, selectCpGsClock])
datMethClock = data.frame(datMethClock0[as.character(datClock$CpGmarker[-1])])
dim(datMethClock)
predictedAge = as.numeric(anti.trafo(
datClock$CoefficientTraining[1] + as.matrix(datMethClock) %*% as.numeric(datClock$CoefficientTraining[-1])
))
predictedAge = predictedAge[1]
} # end of if
# Let's add comments to the age prediction
Comment = ifelse (predictedAge < 0,
"Negative DNAm age.",
ifelse (predictedAge > 100, "Old DNAm age.", rep("", length(predictedAge))))
Comment[is.na(predictedAge)] = "Age prediction was not possible. "
if (sum(selectCpGsClock) < dim(datClock)[[1]] - 1) {
Comment = rep(
"ERROR: The CpGs listed in column 1 of the input data did not contain the CpGs needed for calculating DNAm age. Make sure to input cg numbers such as cg00075967.",
length(predictedAge)
)
}
if (sum(selectCpGsClock) > dim(datClock)[[1]] - 1) {
Comment = rep(
"ERROR: The CpGs listed in column 1 of the input data contain duplicate CpGs. Each row should report only one unique CpG marker (cg number).",
length(predictedAge)
)
}
restSamples = -minMethBySample > 0.05 | maxMethBySample > 1.05
restSamples[is.na(restSamples)] = FALSE
lab1 = "MAJOR WARNING: Probably you did not input beta values since either minMethBySample<-0.05 or maxMethBySample>1.05."
Comment[restSamples] = paste(Comment[restSamples], lab1)
restSamples = noMissingPerSample > 0 &
noMissingPerSample <= 100
lab1 = "WARNING: Some beta values were missing, see noMissingPerSample."
Comment[restSamples] = paste(Comment[restSamples], lab1)
restSamples = noMissingPerSample > 3000
lab1 = "MAJOR WARNING: More than 3k missing values!!"
Comment[restSamples] = paste(Comment[restSamples], lab1)
restSamples = noMissingPerSample > 100 &
noMissingPerSample <= 3000
lab1 = "MAJOR WARNING: noMissingPerSample>100"
Comment[restSamples] = paste(Comment[restSamples], lab1)
restSamples = meanMethBySample > .35
restSamples[is.na(restSamples)] = FALSE
lab1 = "Warning: meanMethBySample is >0.35"
Comment[restSamples] = paste(Comment[restSamples], lab1)
restSamples = meanMethBySample < .25
restSamples[is.na(restSamples)] = FALSE
lab1 = "Warning: meanMethBySample is <0.25"
Comment[restSamples] = paste(Comment[restSamples], lab1)
datout = data.frame(
SampleID = colnames(dat1)[-1],
DNAmAge = predictedAge,
Comment,
noMissingPerSample,
meanMethBySample,
minMethBySample,
maxMethBySample
)
if (!is.null(meanXchromosome)) {
if (length(meanXchromosome) == dim(datout)[[1]]) {
predictedGender = ifelse(meanXchromosome > .4,
"female",
ifelse(meanXchromosome < .38, "male", "Unsure"))
datout = data.frame(datout,
predictedGender = predictedGender,
meanXchromosome = meanXchromosome)
} # end of if
} # end of if