forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ChannelingSampleSat.java
80 lines (67 loc) · 2.93 KB
/
ChannelingSampleSat.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.BoolVar;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverSolutionCallback;
import com.google.ortools.sat.DecisionStrategyProto;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.SatParameters;
/** Link integer constraints together. */
public class ChannelingSampleSat {
public static void main(String[] args) throws Exception {
Loader.loadNativeLibraries();
// Create the CP-SAT model.
CpModel model = new CpModel();
// Declare our two primary variables.
IntVar[] vars = new IntVar[] {model.newIntVar(0, 10, "x"), model.newIntVar(0, 10, "y")};
// Declare our intermediate boolean variable.
BoolVar b = model.newBoolVar("b");
// Implement b == (x >= 5).
model.addGreaterOrEqual(vars[0], 5).onlyEnforceIf(b);
model.addLessOrEqual(vars[0], 4).onlyEnforceIf(b.not());
// Create our two half-reified constraints.
// First, b implies (y == 10 - x).
model.addEquality(LinearExpr.sum(vars), 10).onlyEnforceIf(b);
// Second, not(b) implies y == 0.
model.addEquality(vars[1], 0).onlyEnforceIf(b.not());
// Search for x values in increasing order.
model.addDecisionStrategy(new IntVar[] {vars[0]},
DecisionStrategyProto.VariableSelectionStrategy.CHOOSE_FIRST,
DecisionStrategyProto.DomainReductionStrategy.SELECT_MIN_VALUE);
// Create the solver.
CpSolver solver = new CpSolver();
// Force the solver to follow the decision strategy exactly.
solver.getParameters().setSearchBranching(SatParameters.SearchBranching.FIXED_SEARCH);
// Tell the solver to enumerate all solutions.
solver.getParameters().setEnumerateAllSolutions(true);
// Solve the problem with the printer callback.
solver.solve(model, new CpSolverSolutionCallback() {
public CpSolverSolutionCallback init(IntVar[] variables) {
variableArray = variables;
return this;
}
@Override
public void onSolutionCallback() {
for (IntVar v : variableArray) {
System.out.printf("%s=%d ", v.getName(), value(v));
}
System.out.println();
}
private IntVar[] variableArray;
}.init(new IntVar[] {vars[0], vars[1], b}));
}
}