-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhuangjinkeng.Rmd
673 lines (507 loc) · 23.7 KB
/
huangjinkeng.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
---
title: "A股惊现7大黄金坑,黄金坑里藏黄金"
subtitle: "大数据驱动投资"
author: "QuandlFinance"
date: "`r Sys.Date()`"
output:
tufte::tufte_html: default
tufte::tufte_book:
citation_package: natbib
latex_engine: xelatex
tufte::tufte_handout:
citation_package: natbib
latex_engine: xelatex
ctex: yes
link-citations: yes
---
```{r setup, include=FALSE}
library(tufte)
knitr::opts_chunk$set(tidy = FALSE, cache.extra = packageVersion('tufte'))
options(htmltools.dir.version = FALSE)
```

# 何为黄金坑
>价值投资大师格雷厄姆在其名著《聪明的投资者》中透露,能稳定实现较好投资收益的关键是寻找具有 " 安全边际 " 的公司,即投资价格远低于价值的股票.可以说,找低估值标的进行投资,是一个性价比相对较高的方法,也是极好的买入时机。因为经济的规律总是高低相间,周而复始,一旦经济转好,低估值回到合理估值,就会有极佳的回报.
>那么可以关注哪些低估的行业呢?我们一起来看看.
>资管新规以后,固收类产品打破刚性兑付,收益持续下降,权益类资产迎来黄金发展周期.权益类基金作为资产配置.基金投资与股票投资相辅相成.
更多内容关注[**QuandlFinance**微信公众号]().`资讯产品`相关资讯服务^[QuandlFinance[好基工作室]()和 [每日金股池]()].若对**基金投资**不了解的,更多内容参见 @QuandlFinance。
```{r echo=FALSE,warning=FALSE,message=FALSE}
library(billboarder)
library(wordcloud2)
library(jiebaR)
library(tmcn)
library(gplots)
library(RColorBrewer)
library(heatmaply)
library(d3heatmap)
library(quantmod)
library(shiny)
library(shinyWidgets)
library(bs4Dash)
library(plotly)
library(shiny)
library(fontawesome)
library(shinyWidgets)
library(bs4Dash)
library(DT)
library(shinydashboard)
library(leaflet)
library(dygraphs)
library(plotly)
library(visNetwork)
library(treemap)
library(viridis)
library(RColorBrewer)
library(highcharter)
library(ggplot2)
library(echarts4r)
library(ECharts2Shiny)
library(echarts4r.maps)
library(data.table)
library(dplyr)
library(jsonlite)
library(Tushare)
library(xts)
library(lubridate)
today<-ymd(Sys.Date())
pro <-pro_api(token ='fe8102bf83f5f83f6608aa46fa5e985c534c227786236a1192e5fd55')
#stocks_names<-pro(api_name = 'stock_basic')
stocks_names<-fread("D:\\teachers\\stocks_names_201907.csv")
start_date<-Sys.Date()-years(1)
latest_week<-Sys.Date()-days(15)
latest_day<-Sys.Date()-days(1)
latest_week<-Sys.Date()-days(15)
latest_month<-Sys.Date()-days(30)
start_date<-Sys.Date()-days(304)
get_data<-function(ts_code){
start_date=start_date
data<-pro(api_name = 'daily', ts_code=ts_code, start_date=start_date)
}
##get basket stocks
get_stock_prices <- function(ticker, return_format = "tibble", ...) {
# Get stock prices
stock_prices <- get_data(ts_code= ticker, ...)
colnames(stock_prices)<-c("ts_code","Date","open","high","low","close","pre_close","change","pct_change","volume","amount")
Date_new<-stock_prices$Date
stock_prices_xts<-as.xts(OHLCV(stock_prices),order.by=ymd(stock_prices$Date))
# Rename
names(stock_prices_xts) <- c("Open", "High", "Low", "Close","Adjusted","Volume")
# Return in xts format if tibble is not specified
if (return_format == "tibble") {
stock_prices <- stock_prices_xts %>%
as_tibble() %>%
mutate(Date=ymd(Date_new))
} else {
stock_prices <- stock_prices_xts
}
stock_prices
}
##获取股票的反弹数据
get_log_returns<-function(data){
data%>%
mutate(Log.Returns=dailyReturn(as.xts(as.numeric(Close),order.by=Date), subset=NULL, type='arithmetic',leading=TRUE))%>%
select(Date,Log.Returns)%>%
as.tibble()
}
```
# 黄金坑 房地产

>经过过去20年的发展,房地产市场全国性房地产公司万科,保利,绿地,融创,恒大,碧桂园在2019年规模效应越来越强,加上近期房地产信托的管控,房地产企业遭遇严重抽血,股价大跌,但万科,恒大,融创公司已经停止下半年的拿地计划,手握千亿现金资产,今年以来融创持续并购中小房地产公司,这个行业越来越成熟,护城河越来越高,最后势必进入寡头垄断时代.
>当然房地产背后最大的控股股东是中国平安,生命人寿,大家保险(安邦)金融帝国.
```{r echo=FALSE,message=FALSE,warning=FALSE}
namejun<-c("万科A","金地集团","保利地产","金科股份","荣安地产","阳光城")
stocks_jun<-stocks_names%>%filter(name %in% namejun)
jungong <- stocks_jun %>%
mutate(
stock.prices = map(ts_code,
function(.x) get_stock_prices(.x)
),
log.returns = map(stock.prices,
function(.x) get_log_returns(.x)),
mean.log.returns = map_dbl(log.returns, ~ mean(.$Log.Returns)),
sd.log.returns = map_dbl(log.returns, ~ sd(.$Log.Returns)),
n.trade.days = map_dbl(stock.prices, nrow)
)%>%as_tibble()
```
```{r echo=FALSE,fig.fullwidth = TRUE, warning=FALSE, cache=TRUE, message=FALSE}
library(tvthemes)
library(lubridate)
library(forcats)
jungong %>%
unnest(stock.prices)%>%
arrange(desc(Date))%>%
ggplot(aes(x=desc(Date),y=as.numeric(Close)),color=name)+
geom_line()+
facet_wrap(~name,ncol=3,scales = "free_y")+
labs(x="日期",y="价格", title="房地产")+
#scale_fill_stark()+
theme(panel.border = element_blank(),
panel.grid.major = element_line(colour = "grey61", size = 0.5, linetype = "dotted"),
panel.grid.minor = element_blank(),
axis.line=element_line(colour="black"),
plot.title = element_text(hjust = 0.5,size=20,colour="indianred4"))+
theme(legend.position="none")
```
# 黄金坑 航空运输

>国际油价,汇率是影响航空公司股价的重要因素,国际油价持续维持在低位,全球经济增速放缓,进一步压制石油的上涨.航空公司成本有望降低一半,当然汇率人民币的国际化对于以人民币为收入的企业非常不利,但目前航空股票已经处于历史低位.
>白菜价,特点需要长时间低成本资金大额买入低价白菜!!
```{r echo=FALSE,message=FALSE,warning=FALSE}
names<-c("东方航空","南方航空","春秋航空","中国国航")
stocks_name<-stocks_names%>%
filter(name %in% names)
china_stocks <- stocks_name %>%
mutate(
stock.prices = map(ts_code,
function(.x) get_stock_prices(.x)
),
log.returns = map(stock.prices,
function(.x) get_log_returns(.x)),
mean.log.returns = map_dbl(log.returns, ~ mean(.$Log.Returns)),
sd.log.returns = map_dbl(log.returns, ~ sd(.$Log.Returns)),
n.trade.days = map_dbl(stock.prices, nrow)
)%>%as_tibble()
```
```{r echo=FALSE,fig.fullwidth = TRUE, warning=FALSE, cache=TRUE, message=FALSE}
library(tvthemes)
library(lubridate)
library(forcats)
china_stocks %>%
unnest(stock.prices)%>%
arrange(desc(Date))%>%
ggplot(aes(x=desc(Date),y=as.numeric(Close)),color=name)+
geom_line()+
facet_wrap(~name,ncol=3,scales = "free_y")+
labs(x="日期",y="价格",title="航空")+
#scale_fill_stark()+
theme(panel.border = element_blank(),
panel.grid.major = element_line(colour = "grey61", size = 0.5, linetype = "dotted"),
panel.grid.minor = element_blank(),
axis.line=element_line(colour="black"),
plot.title = element_text(hjust = 0.5,size=20,colour="indianred4"))+
theme(legend.position="none")
```
# 黄金坑 天然气

>国庆大阅兵,环保先行,燃气公司被动扩张,城中村,城边村开始集中供暖,LNG天然气的价格上涨,本质上只需要西伯利亚的寒风一吹,雪花一飘,燃气瞬间涨停.
```{r echo=FALSE,message=FALSE,warning=FALSE}
#医药基金持仓股票
names1<-c("新疆浩源","新疆火炬","大通燃气","东方环宇","贵州燃气","长春燃气")
stocks_name1<-stocks_names%>%
filter(name %in% names1)
china_stocks1 <- stocks_name1 %>%
mutate(
stock.prices = map(ts_code,
function(.x) get_stock_prices(.x)
),
log.returns = map(stock.prices,
function(.x) get_log_returns(.x)),
mean.log.returns = map_dbl(log.returns, ~ mean(.$Log.Returns)),
sd.log.returns = map_dbl(log.returns, ~ sd(.$Log.Returns)),
n.trade.days = map_dbl(stock.prices, nrow)
)%>%as_tibble()
```
```{r echo=FALSE,fig.fullwidth = TRUE, warning=FALSE, cache=TRUE, message=FALSE}
library(tvthemes)
library(lubridate)
library(forcats)
china_stocks1 %>%
unnest(stock.prices)%>%
arrange(desc(Date))%>%
ggplot(aes(x=desc(Date),y=as.numeric(Close)),color=name)+
geom_line()+
facet_wrap(~name,ncol=3,scales = "free_y")+
labs(x="日期",y="价格",title="天然气")+
#scale_fill_stark()+
theme(panel.border = element_blank(),
panel.grid.major = element_line(colour = "grey61", size = 0.5, linetype = "dotted"),
panel.grid.minor = element_blank(),
axis.line=element_line(colour="black"),
plot.title = element_text(hjust = 0.5,size=20,colour="indianred4"))+
theme(legend.position="none")
```
# 黄金坑 银行板块
>打个广告,关注民生银行第一大股东之争,华夏人寿能否上位,安邦人寿能否让贤

>根据申万一级行业市盈率显示的数据,银行业最新的市盈率仅为6.61(8月20日数据),基本处于历史相对最低位的阶段,具有较高的安全边际.
>上半年大部分银行贷款不良率下降,净利润增加,虽然也受到经济下行压力影响,但总体经营稳健,特别是随着下半年货币政策保持流动性合理充裕态势下,业绩仍有提升空间.展望后市,市场整体风险偏好保持低位,银行板块的业绩确定性优势以及部分个股较高的股息率有助于板块估值的稳定,以及保持行业间的相对优势,适合中长期配置.
>重点关注股票 招商银行,平安银行,兴业银行,建设银行
```{r echo=FALSE,message=FALSE,warning=FALSE}
yinhang<-c("建设银行","工商银行","招商银行","南京银行","无锡银行","兴业银行","民生银行","平安银行")
stocks_bao<-stocks_names%>%
filter(name %in% yinhang)
baoxian <- stocks_bao %>%
mutate(
stock.prices = map(ts_code,
function(.x) get_stock_prices(.x)
),
log.returns = map(stock.prices,
function(.x) get_log_returns(.x)),
mean.log.returns = map_dbl(log.returns, ~ mean(.$Log.Returns)),
sd.log.returns = map_dbl(log.returns, ~ sd(.$Log.Returns)),
n.trade.days = map_dbl(stock.prices, nrow)
)%>%as_tibble()
```
```{r echo=FALSE,fig.fullwidth = TRUE, warning=FALSE, cache=TRUE, message=FALSE}
library(tvthemes)
library(lubridate)
library(forcats)
baoxian%>%
unnest(stock.prices)%>%
arrange(desc(Date))%>%
ggplot(aes(x=desc(Date),y=as.numeric(Close)),color=name)+
geom_line()+
facet_wrap(~name,ncol=3,scales = "free_y")+
labs(x="日期",y="价格",title="商业银行")+
#scale_fill_stark()+
theme(panel.border = element_blank(),
panel.grid.major = element_line(colour = "grey61", size = 0.5, linetype = "dotted"),
panel.grid.minor = element_blank(),
axis.line=element_line(colour="black"),
plot.title = element_text(hjust = 0.5,size=20,colour="indianred4"))+
theme(legend.position="none")
```
# 黄金坑 国电改革
>国家电力改革,影响深远,着眼于未来,利在千秋万代!
>直购模式与传统电力购买模式,将激发电力企业的活力.

```{r echo=FALSE,message=FALSE,warning=FALSE}
names7<-c("涪陵电力","文山电力","岷江水电","长江电力")
stocks_name7<-stocks_names%>%
filter(name %in% names7)
zhengquan<- stocks_name7 %>%
mutate(
stock.prices = map(ts_code,
function(.x) get_stock_prices(.x)
),
log.returns = map(stock.prices,
function(.x) get_log_returns(.x)),
mean.log.returns = map_dbl(log.returns, ~ mean(.$Log.Returns)),
sd.log.returns = map_dbl(log.returns, ~ sd(.$Log.Returns)),
n.trade.days = map_dbl(stock.prices, nrow)
)%>%as_tibble()
```
```{r echo=FALSE,fig.fullwidth = TRUE, warning=FALSE, cache=TRUE, message=FALSE}
library(tvthemes)
library(lubridate)
library(forcats)
zhengquan%>%
unnest(stock.prices)%>%
arrange(desc(Date))%>%
ggplot(aes(x=desc(Date),y=as.numeric(Close)),color=name)+
geom_line()+
facet_wrap(~name,ncol=2,scales = "free_y")+
labs(x="日期",y="价格",title="电力改革")+
#scale_fill_stark()+
theme(panel.border = element_blank(),
panel.grid.major = element_line(colour = "grey61", size = 0.5, linetype = "dotted"),
panel.grid.minor = element_blank(),
axis.line=element_line(colour="black"),
plot.title = element_text(hjust = 0.5,size=20,colour="indianred4"))+
theme(legend.position="none")
```
# 火山口 北上资金

```{r echo=FALSE,message=FALSE,warning=FALSE}
names8<-c("生益科技","翰蓝环境","鹏鼎控股","光环新网","杰瑞股份","深南电A","涪陵电力","苏交科")
stocks_name8<-stocks_names%>%
filter(name %in% names8)
beishang <- stocks_name8%>%
mutate(
stock.prices = map(ts_code,
function(.x) get_stock_prices(.x)
),
log.returns = map(stock.prices,
function(.x) get_log_returns(.x)),
mean.log.returns = map_dbl(log.returns, ~ mean(.$Log.Returns)),
sd.log.returns = map_dbl(log.returns, ~ sd(.$Log.Returns)),
n.trade.days = map_dbl(stock.prices, nrow)
)%>%as_tibble()
```
```{r echo=FALSE,fig.fullwidth = TRUE, warning=FALSE, cache=TRUE, message=FALSE}
library(tvthemes)
library(lubridate)
library(forcats)
beishang%>%
unnest(stock.prices)%>%
arrange(desc(Date))%>%
ggplot(aes(x=desc(Date),y=as.numeric(Close)),color=name)+
geom_line()+
facet_wrap(~name,ncol=3,scales = "free_y")+
labs(x="日期",y="价格",title="北上资金重仓")+
#scale_fill_stark()+
theme(panel.border = element_blank(),
panel.grid.major = element_line(colour = "grey61", size = 0.5, linetype = "dotted"),
panel.grid.minor = element_blank(),
axis.line=element_line(colour="black"),
plot.title = element_text(hjust = 0.5,size=20,colour="indianred4"))+
theme(legend.position="none")
```
# 火山口 QFII外资重仓

```{r echo=FALSE,message=FALSE,warning=FALSE}
names10<-c("海思科","杰瑞股份","启明星辰","玲珑轮胎","中顺洁柔","宏发股份","太辰光","上海机场","永辉超市")
stocks_name10<-stocks_names%>%
filter(name %in% names10)
QFII <- stocks_name10 %>%
mutate(
stock.prices = map(ts_code,
function(.x) get_stock_prices(.x)
),
log.returns = map(stock.prices,
function(.x) get_log_returns(.x)),
mean.log.returns = map_dbl(log.returns, ~ mean(.$Log.Returns)),
sd.log.returns = map_dbl(log.returns, ~ sd(.$Log.Returns)),
n.trade.days = map_dbl(stock.prices, nrow)
)%>%as_tibble()
```
```{r echo=FALSE,fig.fullwidth = TRUE, warning=FALSE, cache=TRUE, message=FALSE}
library(tvthemes)
library(lubridate)
library(forcats)
QFII %>%
unnest(stock.prices)%>%
arrange(desc(Date))%>%
ggplot(aes(x=desc(Date),y=as.numeric(Close)),color=name)+
geom_line()+
facet_wrap(~name,ncol=3,scales = "free_y")+
labs(x="日期",y="价格",title="QFII外资重仓")+
#scale_fill_stark()+
theme(panel.border = element_blank(),
panel.grid.major = element_line(colour = "grey61", size = 0.5, linetype = "dotted"),
panel.grid.minor = element_blank(),
axis.line=element_line(colour="black"),
plot.title = element_text(hjust = 0.5,size=20,colour="indianred4"))+
theme(legend.position="none")
```
# 火山口 军工大飞机

```{r echo=FALSE,message=FALSE,warning=FALSE}
names9<-c("航天科技","中航光电","中船防务","航天长峰","中船科技","中航沈飞","中国船舶","航天发展","中航高科","航发科技","航发动力","中直股份","航天电器" )
stocks_name9<-stocks_names%>%
filter(name %in% names9)
customer <- stocks_name9 %>%
mutate(
stock.prices = map(ts_code,
function(.x) get_stock_prices(.x)
),
log.returns = map(stock.prices,
function(.x) get_log_returns(.x)),
mean.log.returns = map_dbl(log.returns, ~ mean(.$Log.Returns)),
sd.log.returns = map_dbl(log.returns, ~ sd(.$Log.Returns)),
n.trade.days = map_dbl(stock.prices, nrow)
)%>%as_tibble()
```
```{r echo=FALSE,fig.fullwidth = TRUE, warning=FALSE, cache=TRUE, message=FALSE}
library(tvthemes)
library(lubridate)
library(forcats)
customer %>%
unnest(stock.prices)%>%
arrange(desc(Date))%>%
ggplot(aes(x=desc(Date),y=as.numeric(Close)),color=name)+
geom_line()+
facet_wrap(~name,ncol=3,scales = "free_y")+
labs(x="日期",y="价格",title="军工大飞机")+
#scale_fill_stark()+
theme(panel.border = element_blank(),
panel.grid.major = element_line(colour = "grey61", size = 0.5, linetype = "dotted"),
panel.grid.minor = element_blank(),
axis.line=element_line(colour="black"),
plot.title = element_text(hjust = 0.5,size=20,colour="indianred4"))+
theme(legend.position="none")
```
# 火山口 北斗卫星

```{r echo=FALSE,message=FALSE,warning=FALSE}
#医药基金持仓股票
yinhang<-c("中国应急","中国卫通","中航电子","烽火电子",
"启明信息","四创电子","北斗星空","中海达","雷科防务","中国卫星" )
stocks_name12<-stocks_names%>%
filter(name %in% yinhang)
china_stocks12<- stocks_name12%>%
mutate(
stock.prices = map(ts_code,
function(.x) get_stock_prices(.x)
),
log.returns = map(stock.prices,
function(.x) get_log_returns(.x)),
mean.log.returns = map_dbl(log.returns, ~ mean(.$Log.Returns)),
sd.log.returns = map_dbl(log.returns, ~ sd(.$Log.Returns)),
n.trade.days = map_dbl(stock.prices, nrow)
)%>%as_tibble()
```
```{r echo=FALSE,fig.fullwidth = TRUE, warning=FALSE, cache=TRUE, message=FALSE}
library(tvthemes)
library(lubridate)
library(forcats)
china_stocks12 %>%
unnest(stock.prices)%>%
arrange(desc(Date))%>%
ggplot(aes(x=desc(Date),y=as.numeric(Close)),color=name)+
geom_line()+
facet_wrap(~name,ncol=3,scales = "free_y")+
labs(x="日期",y="价格",title="北斗卫星")+
#scale_fill_stark()+
theme(panel.border = element_blank(),
panel.grid.major = element_line(colour = "grey61", size = 0.5, linetype = "dotted"),
panel.grid.minor = element_blank(),
axis.line=element_line(colour="black"),
plot.title = element_text(hjust = 0.5,size=20,colour="indianred4"))+
theme(legend.position="none")
```
# 风口浪尖 喝酒吃药

```{r echo=FALSE,message=FALSE,warning=FALSE}
#医药基金持仓股票
shanghai<-c("贵州茅台","今世缘","泸州老窖","洋河股份","五粮液","山西汾酒","通策医疗","金域医学","泰格医药","济民制药","益丰药房")
stocks_namesh<-stocks_names%>%
filter(name %in% shanghai)
china_stockssh<- stocks_namesh%>%
mutate(
stock.prices = map(ts_code,
function(.x) get_stock_prices(.x)
),
log.returns = map(stock.prices,
function(.x) get_log_returns(.x)),
mean.log.returns = map_dbl(log.returns, ~ mean(.$Log.Returns)),
sd.log.returns = map_dbl(log.returns, ~ sd(.$Log.Returns)),
n.trade.days = map_dbl(stock.prices, nrow)
)%>%as_tibble()
```
```{r echo=FALSE,fig.fullwidth = TRUE, warning=FALSE, cache=TRUE, message=FALSE}
library(tvthemes)
library(lubridate)
library(forcats)
china_stockssh %>%
unnest(stock.prices)%>%
arrange(desc(Date))%>%
ggplot(aes(x=desc(Date),y=as.numeric(Close)),color=name)+
geom_line()+
facet_wrap(~name,ncol=3,scales = "free_y")+
labs(x="日期",y="价格",title="吃酒喝药")+
#scale_fill_stark()+
theme(panel.border = element_blank(),
panel.grid.major = element_line(colour = "grey61", size = 0.5, linetype = "dotted"),
panel.grid.minor = element_blank(),
axis.line=element_line(colour="black"),
plot.title = element_text(hjust = 0.5,size=20,colour="indianred4"))+
theme(legend.position="none")
```
```{margin_note}
风险最大时,也是机遇最大时.别人恐惧时,我们要贪婪!!
如果说科技股是前锋马龙,那么军工科技将是大前锋邓肯,券商只能做后卫哈登!!
```

# 本周投资策略
> 以改革促降息,科技股积极可为
> 内外部环境仍相对温和,积极信号进一步增多,结构性机会积极可为:外部环境看,美国期限利差倒挂预示美国经济下行压力和美国波动压力,对A股影响有限。内部环境看,LPR机制形成,以利率市场化改革方式促降息,有望引导实体经济融资成本下行,叠加减税降费等政策效果的逐步显现,企业成本费用端压力有望进一步降低,市场风险偏好有望改善;8月以来,国内长端利率明显下行,创2017年以来新低。配置上,继续推荐科技股+汽车,优选华为产业链+半导体产业链。
# 投资大师的成功法则
大师最初也是初学者,跟随大师的脚步才能快速成长.
> "集中投资就是计划生育:股票越少,组合业绩越好;长期持有就是龟兔赛跑:长期内复利可以战胜一切;"
>
> `r tufte::quote_footer('--- 巴菲特')`
# 投资建议
> 1 采用金字塔式投资策略,震荡的行情中按比例1:2:3:4分布建仓!
> 2 延长持有周期,追求一定周期内的绝对投资回报!
> 3 投资有风险,投资需谨慎!!