-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfth_feature_relevance.py
560 lines (453 loc) · 22.3 KB
/
infth_feature_relevance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
"""Little demo on how to use information theoretic measures for
assessing the relevance of elements of a feature set for a given
classification or regression task"""
# 2016,2017 oswald berthold
# TODO: fix examples with regard to information decomposition (see im_quadrotor_plot.py:plot_infth_mi_sensorimotor_xyzpsi_data_vs_model
# TODO: compute these measures using our own density estimators: gmm, som
# TODO: clean up for pushing: merge with smp.infth, pull im_quadrotor_plot stuff
# TODO: clear data?
# TODO: siggen / systems
# TODO: meas / infth
# TODO: models fit-predict
# corr as comparison
# element-wise MI
# check entropy in LCP
# more data: aleke, mfcc
# pi, ais, te, cte
import argparse, os, sys, time
import numpy as np
import pylab as pl
from jpype import startJVM, isJVMStarted, getDefaultJVMPath, JPackage, shutdownJVM, JArray, JDouble, attachThreadToJVM
from smp.infth import init_jpype
from im.im_quadrotor_plot import plot_infth_multi_image
class InfthDataSets(object):
def __init__(self):
self.datasets = [self.get_data_toy_rec2pol, self.get_data_toy_exp]
# self.datasets = [self.get_data_toy_rec2pol_noise, self.get_data_toy_exp_noise]
# self.datasets = [self.get_data_ratslam_conv3, self.get_data_ratslam_rsf]
# self.datasets = [self.get_data_spider_thin_15, self.get_data_spider_thick_15]
# self.datasets = [self.get_data_ratslam_rsf]
# self.datasets = [self.get_data_ratslam_conv3, self.get_data_ratslam_rsf]
# self.datasets = [get_data_toy_rec2pol, get_data_toy_exp, get_data_ratslam_conv3, get_data_ratslam_rsf, get_data_mfcc_motors, get_data_wave_motors]
def get_data_toy_rec2pol(self, numsteps = 1000):
"""create rec2pol data"""
Y = np.linspace(0, 2*np.pi, numsteps).reshape((numsteps, 1))
# print "aaahahah", np.cos(Y).shape
X = np.hstack((np.cos(Y), np.sin(Y)))
print "rec2pol: X.shape", X.shape, "Y.shape", Y.shape
return {"X": X, "Y": Y}
def get_data_toy_rec2pol_noise(self, numsteps = 1000, noise = 1.0):
"""create rec2pol data noisy"""
data = self.get_data_toy_rec2pol(numsteps = numsteps)
data["X"][:,0] += np.random.normal(0.0, noise, data["X"][:,0].shape)
return data
def get_data_toy_exp(self, numsteps = 1000):
Y = np.linspace(0, 3, numsteps).reshape((numsteps, 1))
X = np.hstack((Y * np.random.uniform(1.0, 2.0), np.exp(Y), Y**2))
return {"X": X, "Y": Y}
def get_data_toy_exp_noise(self, numsteps = 1000, noise = 0.1):
data = self.get_data_toy_exp(numsteps = numsteps)
data["X"][:,0] += np.random.normal(0.0, noise, data["X"][:,0].shape)
return data
def get_data_ratslam_conv3(self, numsteps = 1000):
X = np.load("conv3.npy").astype(np.float64)
X /= np.max(np.abs(X))
print "have nans?", np.any(np.isnan(X)), "isfinite", np.any(np.isfinite(X))
random_projection = np.random.randint(0, X.shape[1], size = 120)
# random_projection = np.arange(0, 1000) + 10000
# print "random_projection", random_projection
X = X[:,random_projection]
# X = X[:,[3,4,5]]
print "have nans?", np.any(np.isnan(X)), "isfinite", np.any(np.isfinite(X))
print "ratslam conv3.shape", X.shape
Y = np.load("conv3.pkl")[:-1].astype(np.float64)
Y /= np.max(np.abs(Y))
print "ratslam position.shape", Y.shape
return {"X": X, "Y": Y}
def get_data_ratslam_rsf(self, numsteps = 1000):
# X = np.load("conv3.npy").astype(np.float64)
import cPickle
X = np.array(cPickle.load(open("daten_fuer_oswald/rsf_yred_4_xred_1.pickle", "rb")))
X /= np.max(np.abs(X))
print "have nans?", np.any(np.isnan(X)), "isfinite", np.any(np.isfinite(X))
random_projection = np.random.randint(0, X.shape[1], size = 40)
# random_projection = np.arange(0, 1000) + 10000
# print "random_projection", random_projection
X = X[:,random_projection]
# X = X[:,[3,4,5]]
print "have nans?", np.any(np.isnan(X)), "isfinite", np.any(np.isfinite(X))
print "ratslam conv3.shape", X.shape
Y = np.load("conv3.pkl")[:-1].astype(np.float64)
Y /= np.max(np.abs(Y))
print "ratslam position.shape", Y.shape
return {"X": X, "Y": Y}
def get_data_spider_thin_15(self, numsteps = 1000):
datafile = "forOswald/no_copy_15retsize_Windpark_Oro_Castle_Goatpeaks_rotated_and_flipped.pkl"
datafile = "forOswald/no_copy_50retsize_Windpark_Oro_Castle_Goatpeaks_rotated_and_flipped.pkl"
# datafile = "forOswald/no_copy_117retsize_Windpark_Oro_Castle_Goatpeaks_rotated_and_flipped.pkl"
import pickle
data = pickle.load(open(datafile, "rb"))
X = np.asarray(data["data"]).astype(np.float64)
Y = np.asarray(data["labels"]).reshape((-1, 1)).astype(np.float64)
print X.shape, Y.shape
return {"X": X, "Y": Y}
def get_data_spider_thick_15(self, numsteps = 1000):
datafile = "forOswald/no_copy_spider_eye6.86_7.2_15retsize_Windpark_Oro_Castle_Goatpeaks_rotated_and_flipped.pkl"
datafile = "forOswald/no_copy_spider_eye6.86_7.2_50retsize_Windpark_Oro_Castle_Goatpeaks_rotated_and_flipped.pkl"
# datafile = "forOswald/no_copy_spider_eye6.86_7.2_117retsize_Windpark_Oro_Castle_Goatpeaks_rotated_and_flipped.pkl"
import pickle
data = pickle.load(open(datafile, "rb"))
X = np.asarray(data["data"]).astype(np.float64)
Y = np.asarray(data["labels"]).reshape((-1, 1)).astype(np.float64)
print X.shape, Y.shape
return {"X": X, "Y": Y}
def get_data_mfcc_motors(self, numsteps = 1000):
pass
def get_data_wave_motors(self, numsteps = 1000):
pass
# for all methods
# argument: data
# argument: gaussian, kernel, kozachenko, kraskov1,2
class InfthMeasures(object):
def __init__(self):
pass
def prepare_data_and_attributes(self, data, check_shape = False): # False
# prepare data and attributes
src = np.atleast_2d(data["X"])
dst = np.atleast_2d(data["Y"])
# check orientation
if check_shape:
if src.shape[0] < src.shape[1]:
src = src.T
if dst.shape[0] < dst.shape[1]:
dst = dst.T
return src, dst
def infth_ent_multivariate(self, data, estimator = "kraskov1"):
"""compute multivariate entropy, aka joint entropy for all variables"""
# self.entmvCalcClass = JPackage("infodynamics.measures.continuous.kozachenko").EntropyCalculatorMultiVariateKozachenko
self.entmvCalcClass = JPackage("infodynamics.measures.continuous.kernel").EntropyCalculatorMultiVariateKernel
self.entmvCalc = self.entmvCalcClass()
# prepare data and attributes
src, dst = self.prepare_data_and_attributes(data)
print "entmv shapes", src.shape, dst.shape
print "entmv dtypes", src.dtype, dst.dtype
X = np.hstack((src, dst))
dim_X = X.shape[1]
self.entmvCalc.initialise(dim_X)
self.entmvCalc.setObservations(X)
entmv_avg = self.entmvCalc.computeAverageLocalOfObservations()
return entmv_avg
def infth_ent_sum_single_entropies(self, data):
"""compute the sum of single entropies"""
self.entCalcClass = JPackage("infodynamics.measures.continuous.kernel").EntropyCalculatorKernel
self.entCalc = self.entCalcClass()
# prepare data and attributes
src, dst = self.prepare_data_and_attributes(data)
X = np.hstack((src, dst))
dim_X = X.shape[1]
ent_single = []
ent_avg = 0
for d in range(dim_X):
self.entCalc.initialise()
self.entCalc.setObservations(X[:,d])
ent_single.append(self.entCalc.computeAverageLocalOfObservations())
ent_single = np.array(ent_single)
ent_avg = np.sum(ent_single)
return ent_avg, ent_single
def infth_mi_multivariate(self, data, estimator = "kraskov1", normalize = True):
return infth_mi_multivariate(data = data, estimator = estimator, normalize = normalize)
# def infth_mi_multivariate(self, data, estimator = "kraskov1", normalize = True):
# """compute MI multivariate"""
# # init class and instance
# # self.mimvCalcClass = JPackage("infodynamics.measures.continuous.kraskov").MutualInfoCalculatorMultiVariateKraskov1
# self.mimvCalcClass = JPackage("infodynamics.measures.continuous.kraskov").MutualInfoCalculatorMultiVariateKraskov2
# # self.mimvCalcClass = JPackage("infodynamics.measures.continuous.kernel").MutualInfoCalculatorMultiVariateKernel
# self.mimvCalc = self.mimvCalcClass()
# # set properties
# self.mimvCalc.setProperty("NORMALISE", "true")
# # self.mimvCalc.setProperty("PROP_TIME_DIFF", 0)
# # prepare data and attributes
# src, dst = self.prepare_data_and_attributes(data)
# # src_ = src.copy()
# # src = dst.copy()
# # pl.hist(src[0], bins=255)
# # pl.show()
# print "mimv shapes", src.shape, dst.shape
# print "mimv dtypes", src.dtype, dst.dtype
# dim_src, dim_dst = src.shape[1], dst.shape[1]
# # compute stuff
# # self.mimvCalc.initialise()
# self.mimvCalc.initialise(dim_src, dim_dst)
# self.mimvCalc.setObservations(src, dst)
# # the average global MI between all source channels and all destination channels
# mimv_avg = self.mimvCalc.computeAverageLocalOfObservations()
# return mimv_avg
def infth_mi_elementwise(self, data):
"""elementwise MI matrix, taken from im/im_quadrotor_plot.py:compute_mutual_information"""
self.miCalcClassC = JPackage("infodynamics.measures.continuous.kraskov").MutualInfoCalculatorMultiVariateKraskov2
# miCalcClassC = JPackage("infodynamics.measures.continuous.kraskov").MultiInfoCalculatorKraskov2
self.miCalcC = self.miCalcClassC()
self.miCalcC.setProperty("NORMALISE", "true")
self.miCalcC.setProperty(self.miCalcC.PROP_TIME_DIFF, "0")
# prepare data and attributes
src, dst = self.prepare_data_and_attributes(data)
dim_src, dim_dst = src.shape[1], dst.shape[1]
dim_src, dim_dst = (src.shape[1], dst.shape[1])
measmat = np.zeros((dim_dst, dim_src))
for m in range(dim_dst):
for s in range(dim_src):
# print("m,s", m, s)
# print("ha", m, motor[:,[m]])
self.miCalcC.initialise() # sensor.shape[1], motor.shape[1])
# miCalcC.setObservations(src[:,s], dst[:,m])
self.miCalcC.setObservations(src[:,[s]], dst[:,[m]])
mi = self.miCalcC.computeAverageLocalOfObservations()
# print("mi", mi)
measmat[m,s] = mi
return measmat
def infth_multii_int(self, data):
"""compute Multi-Information / Integration: the difference between sum of
individual entropies and joint entropy, Tononi, Sporns & Edelman et al. 1994"""
# init class and instance
self.multiiCalcClass = JPackage("infodynamics.measures.continuous.kraskov").MultiInfoCalculatorKraskov1
# self.multiiCalcClass = JPackage("infodynamics.measures.continuous.kernel").MultiInfoCalculatorKernel
self.multiiCalc = self.multiiCalcClass()
# set properties
self.multiiCalc.setProperty("NORMALISE", "true")
# self.multiiCalc.setProperty("PROP_ADD_NOISE", "true")
self.multiiCalc.setProperty("SAMPLING_FACTOR_PROP_NAME", "1.0") # how much data to use for estimation
# prepare data and attributes
src, dst = self.prepare_data_and_attributes(data)
X = np.hstack((src, dst))
dim_X = X.shape[1]
# compute stuff
# self.mimvCalc.initialise()
self.multiiCalc.initialise(dim_X)
self.multiiCalc.setObservations(X)
# the average global MI between all source channels and all destination channels
multii_avg = self.multiiCalc.computeAverageLocalOfObservations()
return multii_avg
def infth_pi(self, data):
"""compute PI"""
self.piCalcClass = JPackage("infodynamics.measures.continuous.kraskov").MutualInfoCalculatorMultiVariateKraskov1
return 0
def infth_ais(self, data):
"""compute AIS"""
self.piCalcClass = JPackage("infodynamics.measures.continuous.kraskov").MutualInfoCalculatorMultiVariateKraskov1
return 0
def infth_te(self, data):
"""compute TE"""
self.piCalcClass = JPackage("infodynamics.measures.continuous.kraskov").MutualInfoCalculatorMultiVariateKraskov1
return 0
def infth_corr(self, data):
src, dst = self.prepare_data_and_attributes(data)
X = np.hstack((src, dst))
dim_X = X.shape[1]
corrcoefs = np.corrcoef(X.T)
print "corrcoefs nan/finite", np.any(np.isnan(corrcoefs)), np.any(np.isfinite(corrcoefs))
return corrcoefs
def infth_lyapunov(self, data):
pass
def infth_linear_probe(self, data):
"""learn classifier / regressor probe"""
import sklearn
from sklearn import linear_model
from sklearn import kernel_ridge
from sklearn.model_selection import train_test_split
lm = linear_model.Ridge(alpha = 0.0)
X_train, X_test, y_train, y_test = train_test_split(data["X"], data["Y"], random_state=1)
# pl.subplot(211)
# pl.plot(data["Y"])
# pl.subplot(212)
# pl.plot(range(y_train.shape[0]), y_train)
# pl.plot(range(y_train.shape[0], y_train.shape[0]+ y_test.shape[0]), y_test)
# pl.show()
# lm.fit(data["X"], data["Y"])
# Y_ = lm.predict(data["X"]) # training error
# mse = np.mean(np.square(data["Y"] - Y_))
lm.fit(X_train, y_train)
y_ = lm.predict(X_test)
mse = np.mean(np.square(y_test - y_))
# print "regression training MSE = %f" % (mse)
# pl.plot(data["Y"])
# pl.plot(Y_)
idx = np.argsort(y_test, axis=0)
print y_test.shape, idx.shape
print "idx", idx, idx.flatten()
y_sorted = y_[idx.flatten()]
print "y_sorted", y_sorted.shape
lm2 = linear_model.Ridge(alpha=0.0)
y_sorted_flat = y_sorted.copy() # .reshape((-1, 1))
idx_flat = np.arange(y_sorted.shape[0]).reshape((-1, 1))
print "shapes y_sorted_flat, idx_flat", y_sorted_flat.shape, idx_flat.shape
lm2.fit(idx_flat, y_sorted_flat)
# print dir(lm2)
print lm2.coef_, lm2.intercept_
krr = kernel_ridge.KernelRidge(alpha = 0.0, gamma = 0.01, kernel="rbf")
krr.fit(X_train, y_train)
y_krr = krr.predict(X_test)
y_krr_sorted = y_krr[idx.flatten()]
# pl.plot(y_test[idx.flatten()])
# pl.plot(y_sorted_flat)
# pl.plot(y_krr_sorted)
# # pl.plot(idx_flat, lm2.coef_ * idx_flat.T + lm2.intercept_)
# pl.show()
return mse
def infth_learn_tapping(self, data):
"""learn tapping"""
pass
def main(args):
doplot = args.doplot
init_jpype()
ids = InfthDataSets()
ims = InfthMeasures()
mse_s = []
for i, dataset in enumerate(ids.datasets):
# print dataset
data = dataset(numsteps = 1000)
print "data shapes", data["X"].shape, data["Y"].shape
# print data
# X,Y = data["X"], data["Y"]
X, Y = ims.prepare_data_and_attributes(data, check_shape = False)
entmv = ims.infth_ent_multivariate(data)
print "Joint Entropy H(X) = %f nats" % (entmv)
# ent_sum, ent_single = ims.infth_ent_sum_single_entropies(data)
# print "Sum Single Entropies H(X) = %f nats" % (ent_sum)
# print "Single Entropies H(X_i) = %s nats" % (ent_single)
# mimv = ims.infth_mi_multivariate(data)
# print "Global Mutual Information MI(src; dst) = %f nats (%s)" % (mimv, dataset)
# multii = ims.infth_multii_int(data)
# print "Multi-Information / Integration I(X) = %f nats" % (multii)
# print "Multi-Information / Integration I(X) = %f nats (using definition by Tononi 1994)" % (ent_sum - entmv)
# corrcoefs = ims.infth_corr(data)
# # print "Correlation coefficients = %s" % (str(corrcoefs))
# print "Correlation coefficients, min = %f, max = %f" % (np.min(corrcoefs), np.max(corrcoefs))
# mimat = ims.infth_mi_elementwise(data)
# print "Mutual Information element-wise min = %f, max = %f" % (np.min(mimat), np.max(mimat))
# # TODO: compute historgram over flattened upper triangular mimat
probe_reg_mse = ims.infth_linear_probe(data)
print "Linear Probe MSE = %f" % (probe_reg_mse)
mse_s.append(probe_reg_mse)
################################################################################
# plotting
if doplot:
fig = pl.figure() # figsize=(figw, figh)
ax1 = fig.add_subplot(131)
ax2 = fig.add_subplot(132)
ax3 = fig.add_subplot(133)
ax1.plot(X)
ax1.plot(Y)
dimlim = 10
if mimat.shape[0] > dimlim or mimat.shape[1] > dimlim:
print "plotting histograms instead of full matrix"
mimat_hist = np.histogram(mimat.flatten(), bins=100)
ax2.bar(mimat_hist[1][:-1], mimat_hist[0], mimat_hist[1][1] - mimat_hist[1][0])
mithresh = 0.2
print "# of features with element-wise MI > %f = %d/%d" % (mithresh, mimat[mimat > mithresh].flatten().shape[0], data["X"].shape[1] * data["Y"].shape[1])
if not np.any(np.isfinite(corrcoefs)):
idx = np.triu_indices(corrcoefs.shape[0], k = 0)
print "idx", idx, corrcoefs.shape
corrcoefs_hist = np.histogram(corrcoefs[idx], bins=100)
ax3.bar(corrcoefs_hist[1][:-1], corrcoefs_hist[0], corrcoefs_hist[1][1] - corrcoefs_hist[1][0])
else:
plot_infth_multi_image(i, fig, ax2, mimat, "MI matrix")
plot_infth_multi_image(i, fig, ax3, corrcoefs, "corrcoef matrix")
pl.show()
return mse_s
def main_dimstack():
"""Simple example of dimensional stacking"""
from smp.dimstack import dimensional_stacking
##################################################
# generate data sweep data
# 4D cube with edge length edgelen and discretized axes d0-d3
edgelen = 10
# d0 = np.linspace(0, 0.25*np.pi, edgelen)
# d1 = np.linspace(0, 0.5*np.pi, edgelen)
# d2 = np.linspace(0, 0.75*np.pi, edgelen)
# d3 = np.linspace(0, 1.0*np.pi, edgelen)
f1, f2, f3, f4 = (0.1, 0.12, 0.13, 0.14)
d0 = np.linspace(0, 2*np.pi * f1, edgelen)
d1 = np.linspace(0, 2*np.pi * f2, edgelen)
d2 = np.linspace(0, 2*np.pi * f3, edgelen)
d3 = np.linspace(0, 2*np.pi * f4, edgelen)
# play to probe the plot
# d3 = np.zeros((edgelen,))
eps = 1e-8
# create meshgrid
d0_, d1_, d2_, d3_ = np.meshgrid(d0, d1, d2, d3)
# sin argument
a1 = d0_**2 + d1_**2 + d2_**2 + d3_**2
a2 = d0_**2 + d1_**2 + d2_**2 # + d3_**2
# z = np.sin(a1) / (np.sin(-a2 + np.random.uniform(0, np.pi)) + eps)**(1/2)
z = np.sin(a1)
# print z.shape
# h = pl.contourf(d0,d1,z)
# pl.show()
print "z.shape", z.shape #, z
# configure dimstack axes mapping
xdims = [0, 2]
ydims = [1, 3]
# compute stacked data
stacked_data = dimensional_stacking(z, xdims, ydims)
print "stacked_data.shape", stacked_data.shape
# print "stacked_data", stacked_data
from matplotlib import gridspec
fig = pl.figure()
gs = gridspec.GridSpec(1,2)
ax1 = fig.add_subplot(gs[0,0])
ax1.set_title("4D sine wave")
ax1.pcolormesh(stacked_data, cmap = pl.get_cmap("seismic")) # spectral?
ax1.set_aspect(1.0)
##################################################
# generate histogram data
# t = np.linspace(0, 1, 1000)
t = np.random.uniform(-np.pi, np.pi, 10000)
t1 = t * 1e-3
# X = np.array([np.cos(t*1e-1)**2, np.cos(t * 0.0013), np.cos(t*0.001)/(t1+1e-9), np.sin(t*1.0)/(t1+1e-9)]).T
# X = np.array([np.sin(t1**2), np.exp(-(t**2)), t**3, t**0.5]).T
# X = np.array([t*0.1, t*0, t*0, t*0]).T # t*0.12, t*0.14, t*0.16]).T
X = np.zeros((t.shape[0], 4))
Xn = np.random.normal([0.1, 0.5, 1.0, 2.0], [0.2, 1.0, 0.5, 0.1], (t.shape[0], 4)) #, X.shape)
X = X + Xn
print "X.shape", X.shape
# use a histogram, that is scatterstack
Xh = np.histogramdd(X, bins=10)
# print "type(Xh)", type(Xh)
print "histo shape Xh", Xh[0].shape
# Xh += Xn.reshape((10, 10, 10, 10))
# # line markers
# Xh[0][0,:,:,:] = 20.0
# Xh[0][1,:,:,:] = 30.0
# Xh[0][:,1,:,:] = 40.0
# Xh[0][:,:,2,:] = 50.0
# Xh[0][:,:,4,:] = 70.0
# Xh[0][:,:,:,7] = 100.0
stacked_data = dimensional_stacking(Xh[0], xdims, ydims)
print "stacked_data.shape", stacked_data.shape
# , stacked_data
ax2 = fig.add_subplot(gs[0,1])
ax2.set_title("Histogram of correlated 4D uniform white noise")
x_ = np.linspace(-1.0, 1.0, 10**2)
y_ = np.linspace(-1.0, 1.0, 10**2)
ax2.pcolormesh(x_, y_, stacked_data, cmap=pl.get_cmap("Oranges"))
ax2.set_aspect(1.0)
pl.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# TODO datafile, measure mode, ...
parser.add_argument("-m", "--mode", default="infth", type=str, help="which mode to run: infth, dimstack")
parser.add_argument('-dp', "--doplot", action='store_true', help='Do additional plotting?')
args = parser.parse_args()
# definitions of entropy, joint entropy, conditional entropy, etc from Lizier 2014 JIDT Paper/Cheatsheet
if args.mode == "infth":
stats_size = 1
mse_s = []
for i in range(stats_size):
# mse_s = main()
mse_s.append(main(args))
print "mse_s", mse_s
mse_s = np.array(mse_s)
print "conv3 avg mse over 100 runs @120-dim proj = %f" % mse_s[:,0].mean() # mse_s[range(0, 10, 2)]
print " rsf avg mse over 100 runs @040-dim proj = %f" % mse_s[:,1].mean() # mse_s[range(1, 10, 2)]
elif args.mode == "dimstack":
main_dimstack()