forked from jjwillard/cov_adj_bact
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulations_continuous.R
429 lines (369 loc) · 18.7 KB
/
simulations_continuous.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
pacman::p_load(tidyr, rstanarm, foreach, doParallel, tibble, purrr, dplyr)
generate_data <- function(iteration, max_ss){
tibble(treatment = rbinom(n = max_ss, size = 1, p= 0.5),
x1 = rbinom(n = max_ss, size = 1, p= 0.5),
x2 = rbinom(n = max_ss, size = 1, p= 0.5),
x3 = rnorm(n = max_ss),
x4 = x3**2,
x5 = rnorm(n = max_ss),
### x6, x7, x8 are just noise
x6 = rbinom(n = max_ss, size = 1, p= 0.5),
x7 = rnorm(n = max_ss),
x8 = rnorm(n = max_ss))
}
generate_outcomes <- function(data, effect_treatment, beta_1, beta_2, beta_3, beta_4, beta_5, max_ss){
data %>%
mutate(mu = effect_treatment*treatment + beta_1*x1 + beta_2*x2 + beta_3*x3 +
beta_4*x4 + beta_5*x5,
y = rnorm(n = max_ss, mean = mu)) #sd = 1
}
### Models
## correct
model_correct <- quote(stan_glm(y ~ treatment + x1 + x2 + x3 + x4 + x5,
family = gaussian,
data = sim_data,
chains = 3))
## correct prior
model_correct_prior <- quote(stan_glm(y ~ treatment + x1 + x2 + x3 + x4 + x5,
family = gaussian,
data = sim_data,
prior = prior_correct,
chains = 3))
## correct strong prior
model_correct_prior_strong <- quote(stan_glm(y ~ treatment + x1 + x2 + x3 + x4 + x5,
family = gaussian,
data = sim_data,
prior = prior_correct_strong,
chains = 3))
### no quad
model_incorrect <- quote(stan_glm(y ~ treatment + x1 + x2 + x3 + x5,
family = gaussian,
data = sim_data,
chains = 3))
## correct noise
model_noise <- quote(stan_glm(y ~ treatment + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8,
family = gaussian,
data = sim_data,
chains = 3))
## drops strong prognostic variables (not in manuscript)
model_no_strong_prog <- quote(stan_glm(y ~ treatment + x2 + x5,
family = gaussian,
data = sim_data,
chains = 3))
## drops strong prognostic variables and adds noise (not in manuscript)
model_no_strong_prog_noise <- quote(stan_glm(y ~ treatment + x2 + x5 + x6 + x7 + x8,
family = gaussian,
data = sim_data,
chains = 3))
## unadjusted
model_unadjusted <- quote(stan_glm(y ~ treatment,
family = gaussian,
data = sim_data,
chains = 3))
##marginalizes conditional samples
get_marginal_effect <- function(fitted_model){
mod_df <- model.frame(fitted_model)
mod_df$treatment <- 0
exp_y_control <- rowMeans(posterior_epred(fitted_model, newdata = mod_df))
mod_df$treatment <- 1
exp_y_treatment <- rowMeans(posterior_epred(fitted_model, newdata = mod_df))
# posterior of relative risk
exp_y_treatment - exp_y_control
}
results_output <- quote(
tibble(iteration = iteration,
p_sup_thresh = p_sup_thresh,
batch_size = batch_size,
max_ss = max_ss,
model = !!mod_name,
effect_treatment = effect_treatment,
beta_1 = beta_1,
beta_2 = beta_2,
beta_3 = beta_3,
beta_4 = beta_4,
beta_5 = beta_5,
runtime_sec = toc - tic,
n_total = n_total,
n_analyses_total = n_analyses_total,
p_sup = p_sup,
superiority = if_else(p_sup > p_sup_thresh, 1, 0),
reach_max_ss = if_else(n_total == max_ss, 1, 0),
stopped_early = if_else(reach_max_ss == 0, 1, 0), # same info as above just flipped
trt_est_mean = mean(results, na.rm = TRUE), # using posterior MEAN
trt_est_median = median(results, na.rm = TRUE),
rmse = sqrt(mean((results - effect_treatment)**2)),
post_var = var(results),
mae = mean(abs(results - effect_treatment)),
trt_posterior = list(results %>% as_tibble_col(column_name = "treatment")),
stan_summary = list(as_tibble(fit_mod$stan_summary, rownames = "parameter"))
))
## single trial simulation
run_single_sim <- function(iteration,
batch_size,
max_ss = 100,
p_sup_thresh = 0.99,
effect_treatment,
beta_1, beta_2, beta_3, beta_4, beta_5,
full_data,
model){
### Tracks name of the models used
mod_name <- rlang::as_label(enquo(model))
### Pull out one full dataset from list
iteration_data <- full_data[[iteration]]
### Enroll initial participants
sim_data <- iteration_data[1:batch_size, ]
n_total <- batch_size
p_sup <- 0
n_analyses_total <- 0
tic <- tictoc::tic()
while(n_total < max_ss){
# fits the model
sd_y <- sd(sim_data$y)
sd_treatment <- sd(sim_data$treatment)
sd_x1 <- sd(sim_data$x1)
sd_x2 <- sd(sim_data$x2)
sd_x3 <- sd(sim_data$x3)
sd_x4 <- sd(sim_data$x4)
sd_x5 <- sd(sim_data$x5)
# centered at DGM except for trt
prior_correct <- normal(location = c(0, 0.5, -0.25, 0.5, -0.05, 0.25),
scale = 2.5,
autoscale = TRUE)
# centered and scaled
prior_correct_strong <- normal(location = c(0, 0.5, -0.25, 0.5, -0.05, 0.25),
scale = c(2.5/sd_treatment, sd_y/sd_x1, sd_y/sd_x2, sd_y/sd_x3,
sd_y /sd_x4, sd_y/sd_x5),
autoscale = FALSE)
n_total <- length(sim_data$y)
n_analyses_total <- n_analyses_total + 1
fit_mod <- eval(model)
# posterior samples
results <- get_marginal_effect(fit_mod)
# probability of superiority
p_sup <- mean(results < 0)
# p_sup_thresh = u in manuscript
if(p_sup > p_sup_thresh){
break
}
if(n_total >= max_ss){
break
}
# appends new data
sim_data <- iteration_data[1:(n_total + batch_size), ]
}
toc <- tictoc::tic()
# produce final results
eval(results_output)
}
## Wrapper to run .n_iterations trial simulations
complete_sim_continuous <- function(.n_iterations,
.max_ss,
.batch_size,
.effect_treatment,
.beta_1, .beta_2, .beta_3, .beta_4, .beta_5,
.p_sup_thresh = 0.99,
.n_cores = parallel::detectCores(),
.seed = 123){
set.seed(.seed, kind = "L'Ecuyer-CMRG")
.data_structure <- foreach(i = 1:.n_iterations,
.errorhandling = "remove") %do% {
generate_data(i, .max_ss)
}
set.seed(.seed, kind = "L'Ecuyer-CMRG")
.data <- foreach(j = 1:.n_iterations) %do% {
generate_outcomes(.data_structure[[j]], .effect_treatment, .beta_1, .beta_2,
.beta_3, .beta_4, .beta_5, .max_ss)
}
registerDoParallel(cores = .n_cores)
## correct
.model_correct <- foreach(i=1:.n_iterations,
.combine='bind_rows',
.inorder = FALSE,
.errorhandling = "remove") %dopar% {
run_single_sim(iteration = i,
batch_size = .batch_size,
max_ss = .max_ss,
effect_treatment = .effect_treatment,
beta_1 = .beta_1,
beta_2 = .beta_2,
beta_3 = .beta_3,
beta_4 = .beta_4,
beta_5 = .beta_5,
p_sup_thresh = .p_sup_thresh,
full_data = .data,
model = model_correct)
}
## correct prior
.model_correct_prior <- foreach(i=1:.n_iterations,
.combine='bind_rows',
.inorder = FALSE,
.errorhandling = "remove") %dopar% {
run_single_sim(iteration = i,
batch_size = .batch_size,
max_ss = .max_ss,
effect_treatment = .effect_treatment,
beta_1 = .beta_1,
beta_2 = .beta_2,
beta_3 = .beta_3,
beta_4 = .beta_4,
beta_5 = .beta_5,
p_sup_thresh = .p_sup_thresh,
full_data = .data,
model = model_correct_prior)
}
## correct strong prior
.model_correct_prior_strong <- foreach(i=1:.n_iterations,
.combine='bind_rows',
.inorder = FALSE,
.errorhandling = "remove") %dopar% {
run_single_sim(iteration = i,
batch_size = .batch_size,
max_ss = .max_ss,
effect_treatment = .effect_treatment,
beta_1 = .beta_1,
beta_2 = .beta_2,
beta_3 = .beta_3,
beta_4 = .beta_4,
beta_5 = .beta_5,
p_sup_thresh = .p_sup_thresh,
full_data = .data,
model = model_correct_prior_strong)
}
## no quad
.model_incorrect <- foreach(i=1:.n_iterations,
.combine='bind_rows',
.inorder = FALSE,
.errorhandling = "remove") %dopar% {
run_single_sim(iteration = i,
batch_size = .batch_size,
max_ss = .max_ss,
effect_treatment = .effect_treatment,
beta_1 = .beta_1,
beta_2 = .beta_2,
beta_3 = .beta_3,
beta_4 = .beta_4,
beta_5 = .beta_5,
p_sup_thresh = .p_sup_thresh,
full_data = .data,
model = model_incorrect)
}
## correct noise
.model_noise <- foreach(i=1:.n_iterations,
.combine='bind_rows',
.inorder = FALSE,
.errorhandling = "remove") %dopar% {
run_single_sim(iteration = i,
batch_size = .batch_size,
max_ss = .max_ss,
effect_treatment = .effect_treatment,
beta_1 = .beta_1,
beta_2 = .beta_2,
beta_3 = .beta_3,
beta_4 = .beta_4,
beta_5 = .beta_5,
p_sup_thresh = .p_sup_thresh,
full_data = .data,
model = model_noise)
}
## no strong prog
.model_no_strong_prog <- foreach(i=1:.n_iterations,
.combine='bind_rows',
.inorder = FALSE,
.errorhandling = "remove") %dopar% {
run_single_sim(iteration = i,
batch_size = .batch_size,
max_ss = .max_ss,
effect_treatment = .effect_treatment,
beta_1 = .beta_1,
beta_2 = .beta_2,
beta_3 = .beta_3,
beta_4 = .beta_4,
beta_5 = .beta_5,
p_sup_thresh = .p_sup_thresh,
full_data = .data,
model = model_no_strong_prog)
}
## no strong prog noise
.model_no_strong_prog_noise <- foreach(i=1:.n_iterations,
.combine='bind_rows',
.inorder = FALSE,
.errorhandling = "remove") %dopar% {
run_single_sim(iteration = i,
batch_size = .batch_size,
max_ss = .max_ss,
effect_treatment = .effect_treatment,
beta_1 = .beta_1,
beta_2 = .beta_2,
beta_3 = .beta_3,
beta_4 = .beta_4,
beta_5 = .beta_5,
p_sup_thresh = .p_sup_thresh,
full_data = .data,
model = model_no_strong_prog_noise)
}
## unadjusted
.model_unadjusted <- foreach(i=1:.n_iterations,
.combine='bind_rows',
.inorder = FALSE,
.errorhandling = "remove") %dopar% {
run_single_sim(iteration = i,
batch_size = .batch_size,
max_ss = .max_ss,
effect_treatment = .effect_treatment,
beta_1 = .beta_1,
beta_2 = .beta_2,
beta_3 = .beta_3,
beta_4 = .beta_4,
beta_5 = .beta_5,
p_sup_thresh = .p_sup_thresh,
full_data = .data,
model = model_unadjusted)
}
stopImplicitCluster()
# return tibble which includes data the model was run on and its results
.model_correct %>%
bind_rows(.model_incorrect) %>%
bind_rows(.model_noise) %>%
bind_rows(.model_no_strong_prog) %>%
bind_rows(.model_no_strong_prog_noise) %>%
bind_rows(.model_unadjusted) %>%
bind_rows(.model_correct_prior) %>%
bind_rows(.model_correct_prior_strong)
}
## trt effects, null, approx 50% power and 80% power for unadjusted model
trt_effect_100 <- c(0, -0.73, -0.53)
trt_effect_200 <- c(0, -0.52, -0.35)
trt_effect_500 <- c(0, -0.33, -0.22)
trt_effect_1000 <- c(0, -0.23, -0.16)
model_pars <- tibble(max_ss = c(rep(100, length(trt_effect_100)),
rep(200, length(trt_effect_200)),
rep(500, length(trt_effect_500)),
rep(1000, length(trt_effect_1000))),
batch_size = c(rep(20, length(trt_effect_100)),
rep(40, length(trt_effect_200)),
rep(100, length(trt_effect_500)),
rep(200, length(trt_effect_1000))),
beta_1 = 0.5,
beta_2 = -0.25,
beta_3 = 0.5,
beta_4 = -0.05,
beta_5 = 0.25)
model_pars <- model_pars %>%
bind_cols(trt_effect = c(trt_effect_100, trt_effect_200, trt_effect_500, trt_effect_1000))
### Run the full simulation
sim_res <- foreach(j = 1:nrow(model_pars),
.errorhandling = "remove",
.combine = 'rbind') %do% {
complete_sim_continuous(
.n_iterations = 1000,
.max_ss = pull(model_pars[j, "max_ss"]),
.batch_size = pull(model_pars[j, "batch_size"]),
.effect_treatment = pull(model_pars[j, "trt_effect"]),
.beta_1 = pull(model_pars[j, "beta_1"]),
.beta_2 = pull(model_pars[j, "beta_2"]),
.beta_3 = pull(model_pars[j, "beta_3"]),
.beta_4 = pull(model_pars[j, "beta_4"]),
.beta_5 = pull(model_pars[j, "beta_5"]),
.p_sup_thresh = 0.99)
}
saveRDS(sim_res, "PATH")