-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_data.py
1629 lines (1342 loc) · 67.7 KB
/
preprocess_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import sys
import unicodedata
import os
import random
import re
import argparse
import logging
from conll_utils import *
from korean_morph_seq2 import *
from ud_converter import simple_ngram_oracle
'''
Helps prepare data to make it usable
with main.py
TODO: would be nice to make ignore-training-corpus-sent-ids bidirectional
so that stuff evicted from tag set can also be evicted from morph set
however, currently for tagging we just include everything so it doesn't matter
(and unit count only gets smaller during tagging, but if unit count got bigger
we could run into issues)
Clarify that eviction refers to sentences either removed due to errors
or through action filtering
We also have eviction that lands sentences in all_sentences and later
action-based eviction but it uses the same member variable.
Clarify this as well. This is useful so that blatantly erroneous sentences
are ignored before any cross-validation takes place to keep as much balance
as possible.
After cross-validation eviction still occurs, but only within the training
set. We keep sentences with rare actions in test and dev.
'''
#
# Sample command line:
# python3 preprocess_data.py --mode 1 /mnt/deeplearn/CoNLL_2017/UD_Russian/ru-ud-all.conllu --output-suffix=ru --no-shuffle --max-actions-training=100
# python3 preprocess_data.py --mode 0 /home/andy/dev/ash-morpher/corpus/sejong-balanced-spoken.conllu --output-suffix=sejong --no-shuffle --lemma-morphemes --debug --max-actions-training=700
# python3 preprocess_data.py --mode 2 /home/andy/dev/ash-morpher/corpus/sejong-balanced-spoken.conllu --output-suffix=sejong --no-shuffle --lemma-morphemes --enrich-with-original-word --debug
# python3 preprocess_data.py --mode 0 --lemma-as-stem --output-breaklevel-flags --no-shuffle /mnt/deeplearn/CoNLL_2017/UD_Japanese/ja-ud-all.conllu --debug --output-suffix ja
# python3 preprocess_data.py --no-shuffle --mode 1 --use-lemma-morphemes-for-morphtag --lemma-morphemes --output-suffix ko-comb-morph sejong-practice-100000.conllu
# train,dev,test are already split at the CoNLL level, then this program
# can also be run with --training-split 100 --no-shuffle --output-suffix={ud-train,ud-dev,ud-test}
# for ud train,dev,test conllu files separately
parser = argparse.ArgumentParser(description='Process CoNLL-U corpus and output training sets for morphological analysis.')
# Required positional argument
parser.add_argument('input_file', type=str,
help='Input CoNLL-U file (Universal Dependencies)')
parser.add_argument('--mode', type=int, default=0,
help='Processing mode (default 0). 0: unit-to-unit transform (morpheme segmentation/transformation/stem identification using oracle over chars or char n-grams); 1: word-to-morphtag (per-word morphological tagging; does not require mode 0 first); 2: morph-to-morphtag (per-morpheme tagging with optional enriched original word information; requires mode 0 (with same u2u-oracle mode) first; word-level UPOSTAG is ignored)')
parser.add_argument('--u2u-oracle', type=int, default=0,
help='Oracle for unit2unit mode (default 0). 0: smart char2char transform with action optimizer; 1: language-tuned char n-gram transformer')
parser.add_argument('--no-posmorph', action='store_true', default=False,
help='For mode 1, don\'t preface the UPOSTAG to the word tag action')
parser.add_argument('--config-name', type=str, default='ud',
help='Name of configuration to output to configs/ (default \'ud\'). Output filename: language code is probably a good choice.')
parser.add_argument('--output-format', type=str, default='seq2seq',
help='Output format (default seq2seq). seq2seq, MarMoT')
parser.add_argument('--enrich-with-original-word', action='store_true', default=False,
help='Optional output column 2: for mode 2, enrich the '
'per-morpheme tagger with the original per-transformation word by adding an extra input column')
parser.add_argument('--output-breaklevel-flags', action='store_true', default=False,
help='Optional output column 3: for mode 0, output input '
'flags (auxiliary input to seq2seq to indicate '
'whitespace/break status of word at the character level)')
parser.add_argument('--training-split', type=int, default=80,
help='Training split (default 80). Percentage of data to be left for training. If 100, cross-validation is disabled and full file is output. Useful if your input is already split, like UD.')
parser.add_argument('--testing-split', type=int, default=10,
help='Testing split (default 10). Percentage of data to be left for testing')
parser.add_argument('--dev-split', type=int, default=10,
help='Dev split (default 10). Percentage of data to be left for dev')
parser.add_argument('--max-actions-training', type=int, default=0,
help='Maximum number of actions to leave in the training set (default 0, unlimited). Results in all sentences that contain words or characters using uncommon actions being removed. Reasonable values are probably 200-2000 for RNN memory constraints. It\'s probably bad practice to remove from testing and dev sets because we can\'t accurately measure the performance impact of the limited training action set and \'OOV\' actions.')
parser.add_argument('--no-shuffle', action='store_true', default=False,
help='Don\'t perform a random shuffle for all sentences. Makes output deterministic.')
parser.add_argument('--min-word-count', type=int, default=0,
help='Ignore all sentences with less words than this (default 0: no limit).')
parser.add_argument('--debug', action='store_true', default=False,
help='Enable verbose debug lines')
parser.add_argument('--lemma-morphemes', action='store_true', default=False,
help='Enable if CoNLL-U lemma field contains a combination of morphemes (e.g., Korean Sejong Corpus)')
parser.add_argument('--lemma-as-stem', action='store_true', default=False,
help='Enable if CoNLL-U lemma field contains the word stem (e.g., Universal Dependencies Corpus)')
parser.add_argument('--use-lemma-morphemes-for-morphtag', action='store_true', default=False,
help='Combine lemme morphemes and use them as the morph tag (for mode 1)')
parser.add_argument('--spmrl', action='store_true', default=False,
help='Input is SPMRL corpus (morphemes in LEMMA and '
'UPOSTAG fields separated by plus sign)')
parser.add_argument('--ud-multilemma', action='store_true', default=False,
help='Input is Universal Dependencies corpus (morphemes '
'specified as subtokens')
parser.add_argument('--write-config', action='store_true', default=False,
help='Write config and run build_data.py automatically on the config file')
parser.add_argument('--config-fasttext', type=str, default='',
help='Specify pre-trained word vector file for config file. If unspecified, pre-trained word vectors are not loaded')
parser.add_argument('--config-col1-embed-size', type=int, default=300,
help='Specify embedding size for column 1')
parser.add_argument('--config-col2-embed-size', type=int, default=300,
help='Specify embedding size for column 2 (if column 2 doesn\'t exist, size 1 is forced)')
parser.add_argument('--conll-jamo-split', action='store_true', default=False,
help='Split all Korean words into Jamo at the corpus level')
parser.add_argument('--append-underscore-to-word', action='store_true', default=False,
help='Append an underscore to each word to signify whitespace')
parser.add_argument('--max-char-count', type=int, default=400,
help='Ignore all sentences with more chars than this [including underscore whitespace tokens] (default: 400)')
parser.add_argument('--keep-duplicates', action='store_true', default=False,
help='Keep duplicate sentences in the corpus')
parser.add_argument('--output-evicted-training-sent-ids', type=str, default=None,
help='Output original corpus indices of sentences with evicted training actions to the specified file (useful for ensuring aligned training sets among multiple modes with different evicted actions')
parser.add_argument('--ignore-training-corpus-sent-ids', type=str, default=None,
help='Ignore sentence IDs specified in this file (based on original sentence IDs in corpus before any sentence are evicted). Useful for omitting sentences that were evicted in a previous mode. For consistency amongst modes, this happens AFTER non-shuffled identical cross-validation splitting takes place.')
#parser.add_argument('--max-input-sentences', type=int, default=0,
# help='Specifies the maximum number of input sentences to process from the CoNLL input')
#parser.add_argument('--add-orig-word', action='store_true', default=False,
# help='For mode 2, add original word output to each post-transform character for POS tagging')
#parser.add_argument('--rich-character-info', action='store_true', default=False,
# help='For mode 1, indicate that the language encodes rich information in each character (e.g., #Korean). Enables per-character output and extra break-level flags are automatically enabled.')
# used when generating filename
mode_to_str = {0: 'unit2unit', 1: 'word2tag', 2: 'morph2tag'}
args = parser.parse_args()
assert 0 <= args.mode <= 2 # others not supported yet
# make code easier to read later
args.posmorph = not args.no_posmorph
args.shuffle = not args.no_shuffle
# mutually exclusive options
if args.ud_multilemma:
assert not args.spmrl
assert not args.lemma_as_stem
assert not args.lemma_morphemes
if args.output_evicted_training_sent_ids != None:
assert not args.shuffle, 'Don\'t shuffle when using output_evicted_training_sent_ids: instead, pre-shuffle input file before running this script'
assert args.ignore_training_corpus_sent_ids == None, 'Don\'t use both output sent ids and filter sent ids functions at once: ids may not match'
if args.ignore_training_corpus_sent_ids != None:
assert not args.shuffle, 'Don\'t shuffle when using ignore_training_corpus_sent_ids: instead, pre-shuffle input file before running this script'
assert args.output_evicted_training_sent_ids == None, 'Don\'t use both output sent ids and filter sent ids functions at once: ids may not match'
###### DEBUG ######
TODO_pieces = ['a', 'abil', 'acağ', 'acak', 'alım', 'ama', 'an', 'ar', 'arak', 'asın', 'asınız', 'ayım', 'da', 'dan', 'de', 'den', 'dı', 'dığ', 'dık', 'dıkça', 'dır', 'di', 'diğ', 'dik', 'dikçe', 'dir', 'du', 'duğ', 'duk', 'dukça', 'dur', 'dü', 'düğ', 'dük', 'dükçe', 'dür', 'e', 'ebil', 'eceğ', 'ecek', 'elim', 'eme', 'en', 'er', 'erek', 'esin', 'esiniz', 'eyim', 'ı', 'ım', 'ımız', 'ın', 'ınca', 'ınız', 'ıp', 'ır', 'ıyor', 'ız', 'i', 'im', 'imiz', 'in', 'ince', 'iniz', 'ip', 'ir', 'iyor', 'iz', 'k', 'ken', 'la', 'lar', 'ları', 'ların', 'le', 'ler', 'leri', 'lerin', 'm', 'ma', 'madan', 'mak', 'maksızın', 'makta', 'maktansa', 'malı', 'maz', 'me', 'meden', 'mek', 'meksizin', 'mekte', 'mektense', 'meli', 'mez', 'mı', 'mış', 'mız', 'mi', 'miş', 'miz', 'mu', 'muş', 'mü', 'muz', 'müş', 'müz', 'n', 'nın', 'nız', 'nin', 'niz', 'nun', 'nuz', 'nün', 'nüz', 'r', 'sa', 'se', 'sı', 'sın', 'sın', 'sınız', 'sınlar', 'si', 'sin', 'sin', 'siniz', 'sinler', 'su', 'sun', 'sun', 'sunlar', 'sunuz', 'sü', 'sün', 'sün', 'sünler', 'sünüz', 'ta', 'tan', 'te', 'ten', 'tı', 'tığ', 'tık', 'tıkça', 'tır', 'ti', 'tiğ', 'tik', 'tikçe', 'tir', 'tu', 'tuğ', 'tuk', 'tukça', 'tur', 'tü', 'tüğ', 'tük', 'tükçe', 'tür', 'u', 'um', 'umuz', 'un', 'un', 'unca', 'unuz', 'up', 'ur', 'uyor', 'uz', 'ü', 'üm', 'ümüz', 'ün', 'ün', 'ünce', 'ünüz', 'üp', 'ür', 'üyor', 'üz', 'ya', 'yabil', 'yacağ', 'yacak', 'yalım', 'yama', 'yan', 'yarak', 'yasın', 'yasınız', 'yayım', 'ydı', 'ydi', 'ydu', 'ydü', 'ye', 'yebil', 'yeceğ', 'yecek', 'yelim', 'yeme', 'yen', 'yerek', 'yesin', 'yesiniz', 'yeyim', 'yı', 'yım', 'yın', 'yınca', 'yınız', 'yıp', 'yız', 'yi', 'yim', 'yin', 'yince', 'yiniz', 'yip', 'yiz', 'yken', 'yla', 'yle', 'ymış', 'ymiş', 'ymuş', 'ymüş', 'ysa', 'yse', 'yu', 'yum', 'yun', 'yunca', 'yunuz', 'yup', 'yü', 'yuz', 'yüm', 'yün', 'yünce', 'yünüz', 'yüp', 'yüz']
# for consistency:
# sort by alphabetical order
TODO_pieces = sorted(TODO_pieces)
# then sort by longest first (stable sort, so alphabetical order should be maintained)
TODO_pieces = sorted(TODO_pieces, key=len, reverse=True)
###### DEBUG ######
###### FINDING DUPLICATE DATA POINTS ######
# see dataset_statistics.py
# duplicate sentences. key: hash, value: (set_num, idx_in_set)
dupes = dict()
setidx_to_str = {0: 'all'} #, 1: 'test', 2: 'dev'}
#setidx_to_obj = {0: train, 1: test, 2: dev}
# overlap counts for '<train, dev>', '<train, train>', etc
overlap_counts = dict()
for s1 in setidx_to_str.values():
for s2 in setidx_to_str.values():
# sorted prevents duplicates <train, dev>, <dev, train>
overlap_counts['<%s>' % ', '.join(sorted([s1, s2]))] = 0
# however, in our case, we only find duplicates for one set
# (we split at the last second, so we don't know whether those data points
# would have gone into test or dev). besides, it's better than way
# so that we can get a clean split on clean data rather than leaving
# the data count unbalanced after removing invalid items
###### FINDING DUPLICATE DATA POINTS ######
UNIT_TO_UNIT = 0
WORD_TO_MORPHTAG = 1
MORPH_TO_MORPHTAG = 2
args.output_format = args.output_format.lower()
assert args.output_format in ['seq2seq', 'marmot']
assert args.min_word_count >= 0
assert args.max_actions_training >= 0
if args.lemma_as_stem:
assert not args.lemma_morphemes, 'cannot enable both lemma_as_stem and lemma_morphemes options at once'
if args.debug:
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',
level=logging.DEBUG)
else:
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',
level=logging.INFO)
logger = logging.getLogger('CoNLLPreprocessMorph')
# leave-it-be...because it's on by default and we can't "turn off" this argument itself
if args.posmorph:
if args.mode != WORD_TO_MORPHTAG:
logger.info('NOTE: POSMORPH only applicable to word-to-morphtag (mode 1)')
if args.output_breaklevel_flags:
assert args.mode == UNIT_TO_UNIT or args.mode == MORPH_TO_MORPHTAG, 'breaklevel tags only supported in unit2unit or morph2tag (mode 0 or 2)'
assert args.output_format == 'seq2seq', 'breaklevel tags only supported in seq2seq output format'
if args.mode == MORPH_TO_MORPHTAG:
print('WARNING: breaklevel flags mark only one overlapping morphemic segment as WD-BEGIN')
if args.output_format == 'marmot':
assert args.mode == WORD_TO_MORPHTAG, 'MarMoT format only applicable to word-to-morphtag (mode 1)'
if args.mode == MORPH_TO_MORPHTAG:
assert args.lemma_morphemes or args.lemma_as_stem, 'lemma morphemes must be enabled for morph-to-morphtag (mode 2)'
#if args.lemma_morphemes or args.lemma_as_stem:
# assert args.mode == UNIT_TO_UNIT or args.mode == MORPH_TO_MORPHTAG, 'lemma morphemes only available for char-to-char (mode 0) or per-morpheme tagging mode (mode 2)'
if args.enrich_with_original_word:
assert args.mode == UNIT_TO_UNIT or args.mode == MORPH_TO_MORPHTAG, \
'original word enrichment only available in unit2unit or per-morpheme tagging mode (mode 0 or 2)'
if args.use_lemma_morphemes_for_morphtag:
assert args.mode == WORD_TO_MORPHTAG, 'using combined lemma-morphemes for morphtag is only supported for word-to-morphtag (mode 1)'
assert args.lemma_morphemes, 'using combined lemma-morphemes requires that lemma-morphemes option is enabled'
if args.spmrl:
assert args.lemma_morphemes, 'SPMRL option only makes sense with lemma ' \
'morphemes option'
assert args.training_split + args.dev_split + args.testing_split == 100
logger.info('Outputting project configuration to configs/%s...' % args.config_name)
try:
os.mkdir('configs')
except:
pass
# Warn if config already exists
if os.path.exists('configs/%s' % args.config_name):
logger.info('Please remove pre-existing config at: %s' % 'configs/%s' %
args.config_name)
sys.exit(1)
try:
os.mkdir('configs/%s' % args.config_name)
except:
pass
try:
os.mkdir('configs/%s/data' % args.config_name)
except:
pass
try:
os.mkdir('configs/%s/model' % args.config_name)
except:
pass
sent_error_count = 0
corpus_files = [args.input_file]
all_sentences = []
# HACK
main_corpus = None
class OutputUnit(object):
def __init__(self):
# char itself
self.c = ''
# can be used as secondary input to DNN to specify word-breaks, etc
self.flag = ''
self.action_tag = ''
class OutputMorph(object):
def __init__(self):
# used during output
# morpheme itself
self.form = ''
# can be used as secondary input to DNN to specify word-breaks, etc
self.flag = ''
# original untransformed word that this morpheme is a part of
# can be used as auxiliary input to POS tagger to make use of word
# vectors
# self.orig_word = ''
# this class is stored inside a word, so we can use that instead
self.action_tag = ''
class OutputWord(object):
def __init__(self):
# used during output
# word itself
self.form = ''
# can be used as secondary input to DNN to specify word-breaks, etc
self.flag = ''
self.action_tag = ''
# for marmot
self.pos_tag = ''
# if in unit2unit2 mode only
self.output_units = []
# list of output morphemes in the word
# mode 2 only
self.output_morphs = []
def unitAppend(self, c):
self.output_units.append(c)
def morphAppend(self, m):
self.output_morphs.append(m)
class OutputSentence(object):
def __init__(self):
# list of output words in the sentence
self.output_words = []
# pointer to orig conll sentence (used during filtering)
self.orig_conll_sentence = None
def append(self, w):
self.output_words.append(w)
# determine if this is punctuation or not
def ispunct(p):
return unicodedata.category(p).startswith('P')
#spaces
space_tbl = [chr(i) for i in range(sys.maxunicode)
if unicodedata.category(chr(i)).startswith('Zs')]
def strip_all_space(s):
result = ''
for c in s.strip():
if c in space_tbl:
pass
else:
result += c
return result.strip()
def isnum(p):
return p.isdigit() # TODO: what about strange digits like ^2, ^3, etc(powers of 2,3)
# isnumeric vs isdigit()
# whole punctuation set is logger.infoed at end so that checking consistency
# is possible
replace_chars = {
'%': '%',
':': ':',
';': ';',
'〔': '(',
'〕': ')',
',': ',',
'.': '.',
'-': '―',
'?': '?',
'!': '!',
' ': ' ', # Unicode Character 'IDEOGRAPHIC SPACE' (U+3000)
'“': '"',
'”': '"',
'‘': '\'',
'’': '\''
}
def actionToPrettyString(a):
if type(a) is tuple:
if a[0] == 'KEEP':
return 'KEEP'
elif a[0] == 'NOOP':
return 'NOOP'
elif a[0] == 'B-KEEP':
return 'B-KEEP'
elif a[0] == 'I-KEEP':
return 'I-KEEP'
elif a[0] == 'MOD':
#return 'MOD:' + ''.join(a[1])
return 'MOD:' + str(a[1]).replace(', ', ',')
else:
assert None, 'unknown action: ' + str(a)
else:
assert ' ' not in a
return a # just trust it
'''
Return the list of actions that are not in the top N for frequencies
'''
def getUncommonActionsToRemove(sentences, N):
actionsSorted = topNActions(getActionFrequencies(sentences))
return set([actionName for (actionName, actionFreq) in actionsSorted[N:]])
'''
Filter sentences with actions that are in the blacklist actionsToRemove
Useful for reducing action count with rare forms
'''
def filterSentencesByActionBlacklist(sentences, actionsToRemove):
assert 0 <= args.mode <= 2 # others not supported yet
newSentences = []
if args.mode == UNIT_TO_UNIT:
for sent in sentences:
if sent.orig_conll_sentence.evict: # already evicted?
continue
evictSentence = False
for word in sent.output_words:
for unit in word.output_units:
if unit.action_tag in actionsToRemove:
evictSentence = True
break
if evictSentence:
break
if not evictSentence:
newSentences.append(sent)
else:
sent.orig_conll_sentence.evict = True
elif args.mode == WORD_TO_MORPHTAG:
for sent in sentences:
if sent.orig_conll_sentence.evict: # already evicted?
continue
evictSentence = False
for word in sent.output_words:
if word.action_tag in actionsToRemove:
evictSentence = True
break
if not evictSentence:
newSentences.append(sent)
else:
sent.orig_conll_sentence.evict = True
elif args.mode == MORPH_TO_MORPHTAG:
for sent in sentences:
if sent.orig_conll_sentence.evict: # already evicted?
continue
evictSentence = False
for word in sent.output_words:
for morph in word.output_morphs:
if morph.action_tag in actionsToRemove:
evictSentence = True
break
if not evictSentence:
newSentences.append(sent)
else:
sent.orig_conll_sentence.evict = True
return newSentences
## TODO:
# after testing these functions, also add ability to remove less frequent
# words and units
#def filterSentencesByWordFreq
#def filterSentencesByUnitFreq
'''
Filter sentences with actions that occur less often than cut-off threshold
Similar to above function, but lets us specify an exact frequency value cut-off
rather than a set of blacklisted actions
Useful for reducing action count with rare forms
'''
def filterSentencesByActionFreq(sentences, threshold):
assert 0 <= args.mode <= 2 # others not supported yet
actionFrequencies = getActionFrequencies(sentences)
newSentences = []
if args.mode == UNIT_TO_UNIT:
for sent in sentences:
if sent.orig_conll_sentence.evict: # already evicted?
continue
evictSentence = False
for word in sent.output_words:
for unit in word.output_units:
if actionFrequencies[unit.action_tag] < threshold:
evictSentence = True
break
if evictSentence:
break
if not evictSentence:
newSentences.append(sent)
else:
sent.orig_conll_sentence.evict = True
elif args.mode == WORD_TO_MORPHTAG:
for sent in sentences:
if sent.orig_conll_sentence.evict: # already evicted?
continue
evictSentence = False
for word in sent.output_words:
if actionFrequencies[word.action_tag] < threshold:
evictSentence = True
break
if not evictSentence:
newSentences.append(sent)
else:
sent.orig_conll_sentence.evict = True
elif args.mode == MORPH_TO_MORPHTAG:
for sent in sentences:
if sent.orig_conll_sentence.evict: # already evicted?
continue
evictSentence = False
for word in sent.output_words:
for morph in word.output_morphs:
if actionFrequencies[morph.action_tag] < threshold:
evictSentence = True
break
if evictSentence:
break
if not evictSentence:
newSentences.append(sent)
else:
sent.orig_conll_sentence.evict = True
return newSentences
'''
Get word frequencies for the specified sentence set
'''
def getWordFrequencies(sentences):
wordFreq = {}
for sent in sentences:
for word in sent.output_words:
if word.form not in wordFreq:
wordFreq[word.form] = 0
wordFreq[word.form] += 1
return wordFreq
'''
Get unit frequencies for the specified sentence set
'''
def getUnitFrequencies(sentences):
assert 0 <= args.mode <= 1 # others not supported yet
unitFreq = {}
if args.mode == UNIT_TO_UNIT:
for sent in sentences:
for word in sent.output_words:
for unit in word.output_units:
if unit.c not in unitFreq:
unitFreq[unit.c] = 0
unitFreq[unit.c] += 1
elif args.mode == WORD_TO_MORPHTAG:
for sent in sentences:
for word in sent.output_words:
for c in word.form:
if c not in unitFreq:
unitFreq[c] = 0
unitFreq[c] += 1
return unitFreq
'''
Get action frequencies for the specified sentence set
'''
def getActionFrequencies(sentences):
assert 0 <= args.mode <= 2 # others not supported yet
actionFreq = {}
if args.mode == UNIT_TO_UNIT:
for sent in sentences:
for word in sent.output_words:
for unit in word.output_units:
if unit.action_tag not in actionFreq:
actionFreq[unit.action_tag] = 0
actionFreq[unit.action_tag] += 1
elif args.mode == WORD_TO_MORPHTAG:
for sent in sentences:
for word in sent.output_words:
if word.action_tag not in actionFreq:
actionFreq[word.action_tag] = 0
actionFreq[word.action_tag] += 1
elif args.mode == MORPH_TO_MORPHTAG:
for sent in sentences:
for word in sent.output_words:
for morph in word.output_morphs:
if morph.action_tag not in actionFreq:
actionFreq[morph.action_tag] = 0
actionFreq[morph.action_tag] += 1
return actionFreq
'''
Get the total number of words in the specified sentences
'''
def getIndividualWordCount(sentences):
wordCount = 0
for sent in sentences:
wordCount += len(sent.output_words)
return wordCount
'''
Get the total number of units in the specified sentences
'''
def getIndividualUnitCount(sentences):
assert 0 <= args.mode <= 1 # others not supported yet
unitCount = 0
for sent in sentences:
for word in sent.output_words:
if args.mode == UNIT_TO_UNIT:
# always use this array instead of iterating wd.FORM
# just in case we decide not to process units that are still
# in the FORM
unitCount += len(word.output_units)
else:
# assuming chars for unit in this case
unitCount += len(word.form)
return unitCount
'''
Get the total number of morphemes in the specified sentences
'''
def getIndividualMorphCount(sentences):
assert args.mode == MORPH_TO_MORPHTAG # others not supported yet
morphCount = 0
for sent in sentences:
for word in sent.output_words:
morphCount += len(word.output_morphs)
return morphCount
'''
Get the top N actions from the action frequencies dictionary,
in descending order of frequency, or all actions sorted by frequency if N=0
Returns list of
[(action, freq),
...
]
'''
def topNActions(actionFreq, N=0):
assert type(actionFreq) is dict
assert type(N) == int and N >= 0
topActionsList = sorted([(v, k) for (k, v) in actionFreq.items()], reverse=True)
topActionsList_ActionFreqOrder = [(k, v) for (v, k) in topActionsList]
if N == 0:
# return all
return topActionsList_ActionFreqOrder
else:
return topActionsList_ActionFreqOrder[:N]
def procFile(fname):
global main_corpus
global sent_error_count
global dupes
global overlap_counts
global setidx_to_str
fd = open(fname, 'r', encoding='utf-8') #, errors='ignore')
contents = fd.read()
fd.close()
retval_sentences = []
corpus = ConllFile(keepMalformed=True,
checkParserConformity=False,
projectivize=False,
enableLemmaMorphemes=args.lemma_morphemes,
enableLemmaAsStem=args.lemma_as_stem,
compatibleJamo=True,
fixMorphemeLabelBugs=True,
spmrlFormat=args.spmrl,
koreanAsJamoSeq=args.conll_jamo_split)
corpus.read(contents)
main_corpus = corpus
# pre-scan for errors
setidx_to_obj = {0: corpus}
for sentence_idx, sentence in enumerate(corpus):
sentence.evict = False
error_found = False
total_chars = 0
'''
; 21세기 세종계획 균형말뭉치(2000).zip, Written/General/2/CH000093.TXT.tag: sentence 2401
1 ^A^Bvx^A^A^H vx/SL _ _ _ 0 _ _ _
Ignore sentences like this. Something went wrong.
'''
'''
Check for duplicate sentences
'''
if not args.keep_duplicates:
h = hash(sentence)
if h in dupes:
dset, didx = dupes[h]
o = setidx_to_obj[dset]
if o.sentences[didx].is_equal(sentence):
logger.debug('Duplicate data point <%s, all>: %s' % (setidx_to_str[dset], sentence.toSimpleRepresentation()))
overlap_counts['<%s>' % ', '.join(sorted(['all', setidx_to_str[dset]]))] += 1
sentence.evict = True
logger.debug('Skipping sentence')
sent_error_count += 1
continue
else:
logger.debug('Hash collision', h, sentence.toSimpleRepresentation())
else:
dupes[h] = (0, sentence_idx) # training set
for wd_i, wd in enumerate(sentence.tokens):
#if 'vx' in wd.FORM:
# print('TODO: ', wd.FORM, wd.LEMMA, wd.morphemes)
# sys.exit(1)
if wd.FORM:
if len(wd.FORM.strip()) == 0 or ' ' in wd.FORM:
logger.debug('Error found: type 0')
error_found = True
form_copy = wd.FORM
# account for underscore count when checking max_chars
if args.append_underscore_to_word:
# if we're not the last word,
# add a special whitespace _ char
if wd_i < len(sentence.tokens)-1:
form_copy += '_'
for c in form_copy:
total_chars += 1
if len(strip_all_space(c)) == 0:
logger.debug('Error found: type 1')
error_found = True
else:
error_found = True
logger.debug('Error found: type 2')
if not error_found:
if args.lemma_morphemes or args.lemma_as_stem:
if (not wd.LEMMA) or len(wd.LEMMA.strip()) == 0:
logger.debug('Error found: type 3.1 ' +
sentence.toFileOutput())
error_found = True
if args.lemma_as_stem:
if ' ' in wd.LEMMA:
logger.debug('Error found: type 3.2 ' +
sentence.toFileOutput())
error_found = True
if not error_found:
if args.lemma_morphemes:
if args.spmrl:
if len(wd.XPOSTAG.strip()) == 0:
logger.debug('Error found: type 3.3')
error_found = True
if not error_found:
if wd.morphemes:
for m in wd.morphemes:
if len(strip_all_space(m[0])) == 0:
logger.debug('Error found: type 3.3.1')
error_found = True
if len(strip_all_space(m[1])) == 0:
logger.debug('Error found: type 3.3.2')
error_found = True
if error_found:
sentence.evict = True
logger.debug('Skipping sentence')
sent_error_count += 1
continue
if args.max_char_count != 0:
# FIXME: would be great if this took into account underscore tokens
if total_chars > args.max_char_count:
sentence.evict = True
logger.debug('Skipping sentence: exceeds max char length')
sent_error_count += 1
continue
current_sentence = OutputSentence()
current_sentence.orig_conll_sentence = sentence
for wd_i in range(len(sentence.tokens)):
wd = sentence.tokens[wd_i]
current_word = OutputWord()
current_word.form = wd.FORM
# match same as above code
if args.append_underscore_to_word:
# if we're not the last word,
# add a special whitespace _ char
if wd_i < len(sentence.tokens)-1:
current_word.form += '_'
if wd.UPOSTAG == None:
current_word.pos_tag = ''
else:
current_word.pos_tag = wd.UPOSTAG.lower()
if args.mode == UNIT_TO_UNIT:
# only do expansion
if args.lemma_morphemes:
#segs = [part.rsplit('/', 1)[0] for part in wd.LEMMA.split(' + ')]
segs = [m[0] for m in wd.morphemes]
else:
segs = list(wd.LEMMA)
if args.append_underscore_to_word:
# if we're not the last word,
# add a special whitespace _ char
if wd_i < len(sentence.tokens)-1:
segs.append('_')
if args.u2u_oracle == 0:
# smart char2char mode
#logger.info('PROCESS', current_word.form, segs)
try:
a = greedyOracle(current_word.form, segs)
except:
print('failed', wd_i, current_word.form, segs,
sentence.toFileOutput())
sys.exit(1)
#logger.info(a)
action_list = addSegmentation(a, current_word.form, segs)
#logger.info(action_list)
c = restoreOrigSegments(action_list, current_word.form)
assert c == segs, 'restored segments don\'t match: ' + str(c) + ' vs ' + str(segs)
assert len(action_list) == len(current_word.form)
for i in range(len(current_word.form)):
current_unit = OutputUnit()
a = action_list[i]
f = current_word.form[i]
current_unit.c = f
#if a[0] == 'B-KEEP' or a[0] == 'I-KEEP':
# a = ('KEEP', ) # crush for now
# don't cut off B/I-
#if a[0] == 'MOD':
# for item_i in range(len(a[1])):
# a[1][item_i]=a[1][item_i][2:] # cut off B-/I-, only do expansion
assert len(strip_all_space(f)) != 0
action = actionToPrettyString(a)
# special exception for sequence-tagging-morph project
#if args.output_format == 'seq2seq':
# action = 'B-'+action
current_unit.action_tag = action
if args.output_breaklevel_flags:
if i == 0:
current_unit.flag = 'CHR-WD-BEGIN'
else:
current_unit.flag = 'CHR-WD-INTER'
current_word.unitAppend(current_unit)
elif args.u2u_oracle == 1:
# char n-gram mode
# automatically create longest subsequences (prefixes/suffixes) from corpus
split_indices = simple_ngram_oracle.get_longest_split_pieces(list(current_word.form), TODO_pieces)
#if current_word.form == 'Geleceğin':
# debug...
#print('split_indices', split_indices)
#sys.exit(1)
#break
FORM_split = simple_ngram_oracle.split_at(list(current_word.form), split_indices)
LEMMA_split = simple_ngram_oracle.split_at(list(wd.LEMMA), split_indices)
action_list = simple_ngram_oracle.varlen_oracle(FORM_split, LEMMA_split)
#print('Without suffixes:', suffixes_stripped)
#print('FORM split:', FORM_split)
#print('LEMMA split:', LEMMA_split)
#print('Real lemma:', wd.LEMMA)
#print('FORM->LEMMA oracle actions:', action_list)
#print()
restored = simple_ngram_oracle.restore_from_actions(FORM_split, action_list)
assert wd.LEMMA == restored, 'restored segments don\'t match: ' + str(wd.LEMMA) + ' vs ' + str(restored)
# TODO: Needs fixing: if more actions, then need to add some padding
if len(action_list) > len(FORM_split):
print('@@ TODO: actions exceed FORM_split length (len(LEMMA) > len(FORM))')
for i in range(len(FORM_split)):
current_unit = OutputUnit()
a = action_list[i]
f = FORM_split[i]
current_unit.c = f
assert len(strip_all_space(f)) != 0
action = actionToPrettyString(a)
# special exception for sequence-tagging-morph project
#if args.output_format == 'seq2seq':
# action = 'B-'+action
current_unit.action_tag = action
if args.output_breaklevel_flags:
if i == 0: # if first unit, we are at the beginning of the FORM
current_unit.flag = 'CHR-WD-BEGIN'
else:
current_unit.flag = 'CHR-WD-INTER'
current_word.unitAppend(current_unit)
else:
assert None
elif args.mode == WORD_TO_MORPHTAG:
if args.use_lemma_morphemes_for_morphtag:
#all_morph_tags = [part.rsplit('/', 1)[1].strip() for
# part in wd.LEMMA.split(' + ')]
all_morph_tags = [m[1] for m in wd.morphemes]
action = '-'.join(all_morph_tags).upper()
else:
if args.posmorph:
action = '|'.join(['upostag='+current_word.pos_tag]+sorted(wd.FEATS)).lower()
else:
action = '|'.join(sorted(wd.FEATS)).lower()
# special exception for sequence-tagging-morph project
#if args.output_format == 'seq2seq':
# action = 'B-'+action
current_word.action_tag = action
elif args.mode == MORPH_TO_MORPHTAG:
#if args.u2u_oracle == 0:
assert args.lemma_morphemes or args.lemma_as_stem
if args.lemma_morphemes:
#all_parts = [part.rsplit('/', 1) for part in wd.LEMMA.split(' + ')]
all_parts = wd.morphemes
if args.append_underscore_to_word:
# if we're not the last word,
# add a special whitespace _ char
if wd_i < len(sentence.tokens)-1:
all_parts.append(('_', 'SPACE'))
elif args.lemma_as_stem:
assert args.u2u_oracle == 1
if args.posmorph:
action = '|'.join(['upostag='+current_word.pos_tag]+sorted(wd.FEATS)).lower()
else:
action = '|'.join(sorted(wd.FEATS)).lower()
# special exception for sequence-tagging-morph project
#if args.output_format == 'seq2seq':
# action = 'B-'+action
split_indices = simple_ngram_oracle.get_longest_split_pieces(list(current_word.form), TODO_pieces)
FORM_split = simple_ngram_oracle.split_at(list(current_word.form), split_indices)
LEMMA_split = simple_ngram_oracle.split_at(list(wd.LEMMA), split_indices)
action_list = simple_ngram_oracle.varlen_oracle(FORM_split, LEMMA_split)
restored = simple_ngram_oracle.restore_from_actions_plusnonstem(FORM_split, action_list)
#all_parts = [(wd.LEMMA, 'STEM')]
#all_parts += [(current_word.form[len(wd.LEMMA):], action)]
all_parts = restored
assert len(all_parts) > 0
for idx, p in enumerate(all_parts):
if p[1] == 'NONSTEM':
all_parts[idx] = (p[0], action)
#p = (p[0], action)
else:
assert None
for i in range(len(all_parts)):
mform, mtag = all_parts[i]
current_morph = OutputMorph()
current_morph.form = mform
#if current_morph.form.isdigit():
# current_morph.form = '$NUM$' # mark specially (done automatically?)
action = mtag #.lower()
# special exception for sequence-tagging-morph project