-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_vqvae.py
237 lines (215 loc) · 10 KB
/
train_vqvae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import tqdm
import argparse
from omegaconf import OmegaConf
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, Subset
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torchvision.utils import save_image
from models.vqmodel import VQModel
from utils.data import load_data
from utils.logger import get_logger
from utils.tracker import StatusTracker
from utils.misc import get_time_str, check_freq, set_seed
from utils.experiment import create_exp_dir, find_resume_checkpoint, instantiate_from_config, discard_label
from utils.distributed import init_distributed_mode, is_main_process, on_main_process, is_dist_avail_and_initialized
from utils.distributed import wait_for_everyone, cleanup, get_rank, get_world_size, get_local_rank, reduce_tensor
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, required=True, help='Path to configuration file')
parser.add_argument('-e', '--exp_dir', type=str, help='Path to the experiment directory. Default to be ./runs/exp-{current time}/')
parser.add_argument('-r', '--resume', type=str, help='Resume from a checkpoint. Could be a path or `best` or `latest`')
parser.add_argument('-cd', '--cover_dir', action='store_true', default=False, help='Cover the experiment directory if it exists')
return parser
def main():
# PARSE ARGS AND CONFIGS
args, unknown_args = get_parser().parse_known_args()
args.time_str = get_time_str()
if args.exp_dir is None:
args.exp_dir = os.path.join('runs', f'exp-{args.time_str}')
unknown_args = [(a[2:] if a.startswith('--') else a) for a in unknown_args]
unknown_args = [f'{k}={v}' for k, v in zip(unknown_args[::2], unknown_args[1::2])]
conf = OmegaConf.load(args.config)
conf = OmegaConf.merge(conf, OmegaConf.from_dotlist(unknown_args))
# INITIALIZE DISTRIBUTED MODE
device = init_distributed_mode()
print(f'Process {get_rank()} using device: {device}', flush=True)
wait_for_everyone()
# CREATE EXPERIMENT DIRECTORY
exp_dir = args.exp_dir
if is_main_process():
create_exp_dir(
exp_dir=exp_dir, conf_yaml=OmegaConf.to_yaml(conf), subdirs=['ckpt', 'samples'],
time_str=args.time_str, exist_ok=args.resume is not None, cover_dir=args.cover_dir,
)
# INITIALIZE LOGGER
logger = get_logger(
log_file=os.path.join(exp_dir, f'output-{args.time_str}.log'),
use_tqdm_handler=True, is_main_process=is_main_process(),
)
# INITIALIZE STATUS TRACKER
status_tracker = StatusTracker(
logger=logger, print_freq=conf.train.print_freq,
tensorboard_dir=os.path.join(exp_dir, 'tensorboard'),
is_main_process=is_main_process(),
)
# SET SEED
set_seed(conf.seed + get_rank())
logger.info('=' * 19 + ' System Info ' + '=' * 18)
logger.info(f'Experiment directory: {exp_dir}')
logger.info(f'Number of processes: {get_world_size()}')
logger.info(f'Distributed mode: {is_dist_avail_and_initialized()}')
wait_for_everyone()
# BUILD DATASET AND DATALOADER
assert conf.train.batch_size % get_world_size() == 0
bspp = conf.train.batch_size // get_world_size() # batch size per process
train_set = load_data(conf.data, split='train')
valid_set = load_data(conf.data, split='valid')
valid_set = Subset(valid_set, range(32))
train_sampler = DistributedSampler(train_set, num_replicas=get_world_size(), rank=get_rank(), shuffle=True)
train_loader = DataLoader(train_set, batch_size=bspp, sampler=train_sampler, drop_last=True, **conf.dataloader)
valid_loader = DataLoader(valid_set, batch_size=bspp, shuffle=False, drop_last=False, **conf.dataloader)
logger.info('=' * 19 + ' Data Info ' + '=' * 20)
logger.info(f'Size of training set: {len(train_set)}')
logger.info(f'Batch size per process: {bspp}')
logger.info(f'Total batch size: {conf.train.batch_size}')
# BUILD MODEL AND OPTIMIZERS
encoder = instantiate_from_config(conf.encoder)
decoder = instantiate_from_config(conf.decoder)
quantizer = instantiate_from_config(conf.quantizer)
use_ema_update = getattr(quantizer, 'use_ema_update', False)
use_entropy_reg = getattr(quantizer, 'use_entropy_reg', False)
model = VQModel(encoder=encoder, decoder=decoder, quantizer=quantizer).to(device)
optimizer = instantiate_from_config(conf.train.optim, params=model.parameters())
logger.info('=' * 19 + ' Model Info ' + '=' * 19)
logger.info(f'Number of parameters of model: {sum(p.numel() for p in model.parameters()):,}')
logger.info('=' * 50)
# RESUME TRAINING
step, epoch = 0, 0
if args.resume is not None:
resume_path = find_resume_checkpoint(exp_dir, args.resume)
logger.info(f'Resume from {resume_path}')
# load model
ckpt = torch.load(os.path.join(resume_path, 'model.pt'), map_location='cpu')
model.load_state_dict(ckpt['model'])
logger.info(f'Successfully load model from {resume_path}')
# load training states (optimizer, step, epoch)
ckpt = torch.load(os.path.join(resume_path, 'training_states.pt'), map_location='cpu')
optimizer.load_state_dict(ckpt['optimizer'])
step = ckpt['step'] + 1
epoch = ckpt['epoch']
logger.info(f'Successfully load training states from {resume_path}')
logger.info(f'Restart training at step {step}')
del ckpt
# PREPARE FOR DISTRIBUTED TRAINING
if is_dist_avail_and_initialized():
model = DDP(model, device_ids=[get_local_rank()], output_device=get_local_rank())
model_wo_ddp = model.module if is_dist_avail_and_initialized() else model
wait_for_everyone()
# TRAINING FUNCTIONS
@on_main_process
def save_ckpt(save_path: str):
os.makedirs(save_path, exist_ok=True)
# save model
torch.save(dict(
model=model_wo_ddp.state_dict(),
), os.path.join(save_path, 'model.pt'))
# save training states (optimizers, step, epoch)
torch.save(dict(
optimizer=optimizer.state_dict(),
step=step,
epoch=epoch,
), os.path.join(save_path, 'training_states.pt'))
def train_step(batch):
x = discard_label(batch).float().to(device)
# zero the gradients
optimizer.zero_grad()
# forward
out = model(x)
# reconstruction loss
loss_rec = F.mse_loss(out['decx'], x)
# commitment loss
loss_commit = out['loss_commit']
# vq loss
loss_vq = out['loss_vq'] if not use_ema_update else None
# entropy regularization
loss_entropy = out['loss_entropy'] if use_entropy_reg else None
# total loss
loss = loss_rec + conf.train.coef_commit * loss_commit
if not use_ema_update:
loss = loss + loss_vq
if use_entropy_reg:
loss = loss + conf.train.coef_entropy * loss_entropy
# backward
loss.backward()
# optimize
optimizer.step()
# use EMA update for codebook
if use_ema_update:
# count used codebook entries
codebook_num = quantizer.codebook_num
codebook_dim = quantizer.codebook_dim
flat_z = out['z'].detach().permute(0, 2, 3, 1).reshape(-1, codebook_dim)
indices_count = torch.bincount(out['indices'], minlength=codebook_num)
new_sumz = torch.zeros((codebook_num, codebook_dim), device=device)
new_sumz.scatter_add_(dim=0, index=out['indices'][:, None].repeat(1, codebook_dim), src=flat_z)
# reduce sumz and sumn across all processes
new_sumz = reduce_tensor(new_sumz) * get_world_size()
new_sumn = reduce_tensor(indices_count) * get_world_size()
# update codebook
quantizer.update_codebook(new_sumz, new_sumn)
# return
status = dict(loss_rec=loss_rec.item(), loss_commit=loss_commit.item())
status.update(dict(loss_vq=loss_vq.item())) if not use_ema_update else None
status.update(dict(loss_entropy=loss_entropy.item())) if use_entropy_reg else None
status.update(dict(perplexity=out['perplexity'].item(), lr=optimizer.param_groups[0]['lr']))
return status
@on_main_process
@torch.no_grad()
def sample(savepath):
shows = []
for x in valid_loader:
x = discard_label(x).float().to(device)
recx = model_wo_ddp(x)['decx']
C, H, W = recx.shape[1:]
show = torch.stack((x, recx), dim=1).reshape(-1, C, H, W)
shows.append(show)
shows = torch.cat(shows, dim=0)
save_image(shows, savepath, nrow=8, normalize=True, value_range=(-1, 1))
# START TRAINING
logger.info('Start training...')
while step < conf.train.n_steps:
if hasattr(train_loader.sampler, 'set_epoch'):
train_loader.sampler.set_epoch(epoch)
for _batch in tqdm.tqdm(train_loader, desc='Epoch', leave=False, disable=not is_main_process()):
# train a step
model.train()
train_status = train_step(_batch)
status_tracker.track_status('Train', train_status, step)
wait_for_everyone()
# validate
model.eval()
# save checkpoint
if check_freq(conf.train.save_freq, step):
save_ckpt(os.path.join(exp_dir, 'ckpt', f'step{step:0>7d}'))
wait_for_everyone()
# sample from current model
if check_freq(conf.train.sample_freq, step):
sample(os.path.join(exp_dir, 'samples', f'step{step:0>7d}.png'))
wait_for_everyone()
step += 1
if step >= conf.train.n_steps:
break
epoch += 1
# save the last checkpoint if not saved
if not check_freq(conf.train.save_freq, step - 1):
save_ckpt(os.path.join(exp_dir, 'ckpt', f'step{step-1:0>7d}'))
wait_for_everyone()
# END OF TRAINING
status_tracker.close()
cleanup()
logger.info('End of training')
if __name__ == '__main__':
main()