-
Notifications
You must be signed in to change notification settings - Fork 12
/
data_factory.py
239 lines (225 loc) · 8.74 KB
/
data_factory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import pandas as pd
import matplotlib.pyplot as plt
from utils import *
class Data_Factory():
def __init__(self, train_file, validate_file, sep=','):
self.train_df = pd.read_csv(train_file, sep=sep, encoding='utf-8', error_bad_lines=False, dtype=np.str)[:]
self.validate_df = pd.read_csv(validate_file, sep=sep, encoding='utf-8', error_bad_lines=False, dtype=np.str)[:]
self.label_columns = [
'location_traffic_convenience',
'location_distance_from_business_district',
'location_easy_to_find',
'service_wait_time',
'service_waiters_attitude',
'service_parking_convenience',
'service_serving_speed',
'price_level',
'price_cost_effective',
'price_discount',
'environment_decoration',
'environment_noise',
'environment_space',
'environment_cleaness',
'dish_portion',
'dish_taste',
'dish_look',
'dish_recommendation',
'others_overall_experience',
'others_willing_to_consume_again']
self.label_distribute_dict_list = self.label_distribute()
def data(self, label_list):
label_map = {'-2': 0, '-1': 1, '0': 2, '1': 3}
X_train = self.train_df['content'].values
X_val = self.validate_df['content'].values
Y_train_list = []
Y_val_list = []
for current_train_label in label_list:
Y_train = self.train_df[current_train_label].map(label_map).values
Y_train = keras.utils.to_categorical(Y_train, num_classes=4)
Y_train_list.append(Y_train)
Y_val = self.validate_df[current_train_label].map(label_map).values
Y_val = keras.utils.to_categorical(Y_val, num_classes=4)
Y_val_list.append(Y_val)
return X_train, X_val, Y_train_list, Y_val_list, self.label_distribute_dict_list
def label_distribute(self):
dict_list = {}
for label in self.label_columns[:]:
test_df = pd.DataFrame(self.train_df[[label, 'id']].groupby(label).size(), columns=['count'])
test_df['rate'] = test_df['count'].apply(lambda x: int(100 * round(int(x) / 105000, 2)))
test_df.reset_index(inplace=True)
for i in test_df.values:
if label not in dict_list:
dict_list[label] = {}
dict_list[label][int(i[0])+2] = i[2]
return dict_list
if __name__ == '__main__':
from config import *
data_factory = Data_Factory(train_file, validate_file)
# shape
print(data_factory.train_df.shape)
print(data_factory.validate_df.shape)
# 查看各label分布
dict_list = {}
for label in data_factory.label_columns[:]:
test_df = pd.DataFrame(data_factory.train_df[[label, 'id']].groupby(label).size(), columns=['count'])
test_df['rate'] = test_df['count'].apply(lambda x: int(100 * round(int(x) / 105000, 2)))
test_df.reset_index(inplace=True)
for i in test_df.values:
if label not in dict_list:
dict_list[label] = {}
dict_list[label][int(i[0])] = i[2]
print(test_df)
# sample
data_factory.train_df['content'].head(2)
# 查看 doc 字数分布
docs = data_factory.train_df['content'][:]
doc_lens = [len(doc) for doc in docs]
n, bins, patches = plt.hist(x=doc_lens, bins='auto', color='#0504aa',
alpha=0.7, rwidth=0.85)
plt.grid(axis='y', alpha=0.75)
# 查看 doc 中句子数量分布
docs_sentence_list = [cut_doc_2_sentences(doc, ['.', '!', '?', ';', '。', '!', '?', ';'], 10, 80) for doc in docs[:]]
# docs_sentence_list[:3]
sentence_lens = [len(sentence) for sentence in docs_sentence_list]
n, bins, patches = plt.hist(x=sentence_lens, bins='auto', color='#0504aa',
alpha=0.7, rwidth=0.85)
plt.grid(axis='y', alpha=0.75)
# 查看句子长度分布
sentence_lens = [[len(seq) for seq in sentence] for sentence in docs_sentence_list]
seq_lens = []
for i in sentence_lens:
seq_lens.extend(i)
n, bins, patches = plt.hist(x=seq_lens, bins='auto', color='#0504aa',
alpha=0.7, rwidth=0.85)
plt.grid(axis='y', alpha=0.75)
# 句子中词数分布
sentence_lens = [[len(jieba.lcut(sentence)) for sentence in sentence_list] for sentence_list in
docs_sentence_list[:]]
seq_lens = []
for i in sentence_lens:
seq_lens.extend(i)
n, bins, patches = plt.hist(x=seq_lens, bins='auto', color='#0504aa',
alpha=0.7, rwidth=0.85)
plt.grid(axis='y', alpha=0.75)
''' 各label分布
count rate
location_traffic_convenience
-1 1318 1
-2 81382 78
0 1046 1
1 21254 20
count rate
location_distance_from_business_district
-1 586 1
-2 83680 80
0 533 1
1 20201 19
count rate
location_easy_to_find
-1 3976 4
-2 80605 77
0 2472 2
1 17947 17
count rate
service_wait_time
-1 3034 3
-2 92763 88
0 4382 4
1 4821 5
count rate
service_waiters_attitude
-1 8684 8
-2 42410 40
0 12534 12
1 41372 39
count rate
service_parking_convenience
-1 1323 1
-2 98276 94
0 1456 1
1 3945 4
count rate
service_serving_speed
-1 5487 5
-2 88700 84
0 2379 2
1 8434 8
count rate
price_level
-1 12375 12
-2 52820 50
0 24249 23
1 15556 15
count rate
price_cost_effective
-1 3011 3
-2 80242 76
0 3072 3
1 18675 18
count rate
price_discount
-1 1716 2
-2 64243 61
0 18255 17
1 20786 20
count rate
environment_decoration
-1 2139 2
-2 53916 51
0 9492 9
1 39453 38
count rate
environment_noise
-1 3077 3
-2 73445 70
0 4843 5
1 23635 23
count rate
environment_space
-1 5706 5
-2 65398 62
0 9262 9
1 24634 23
count rate
environment_cleaness
-1 4513 4
-2 66598 63
0 4703 4
1 29186 28
count rate
dish_portion
-1 10018 10
-2 56917 54
0 9506 9
1 28559 27
count rate
dish_taste
-1 4363 4
-2 5070 5
0 40200 38
1 55367 53
count rate
dish_look
-1 3178 3
-2 75975 72
0 4675 4
1 21172 20
count rate
dish_recommendation
-1 2275 2
-2 84767 81
0 1988 2
1 15970 15
count rate
others_overall_experience
-1 9384 9
-2 2110 2
0 23436 22
1 70070 67
count rate
others_willing_to_consume_again
-1 4159 4
-2 65600 62
0 2913 3
1 32328 31
'''