-
Notifications
You must be signed in to change notification settings - Fork 12
/
utils.py
95 lines (81 loc) · 3.38 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import os
import time as time
import jieba
import keras
import numpy as np
import pickle
def cut_doc_2_sentences(doc, sentence_flags=None, skip_limit=5, long_cut_limit=130,
all_flags=[',', '.', '!', '?', ';', '~', ',', '。', '!', '?', ';', '~', '\n', ' '],
strip_flags=None):
if strip_flags is None:
strip_flags = [' ']
if sentence_flags is None:
sentence_flags = all_flags
last_flag = 0
sentence_list = []
doc_length = len(doc)
for i in range(doc_length):
cut_flags = sentence_flags
if i + 1 - last_flag > long_cut_limit:
cut_flags = all_flags
if (i <= doc_length - 2 and doc[i] in cut_flags and doc[
i + 1] not in cut_flags) or i == doc_length - 1:
temp = doc[last_flag:i + 1]
chars_no_flags = [char for char in temp if char not in cut_flags]
if len(chars_no_flags) < skip_limit:
# 句子内非标点句长小于阀值 skip_limit 的并入下一个分句
continue
# 分完句以后去掉前后无用的字符
for flag in strip_flags:
temp = temp.strip(flag)
sentence_list.append(temp)
last_flag = i + 1
return sentence_list
def cut_docs(docs):
start_time = time.time()
print('start 分句...')
docs_sentence_list = [cut_doc_2_sentences(doc) for doc in docs]
print('end 分句,Total docs = {},Cost time = {}'.format(len(docs), time.time() - start_time))
start_time = time.time()
print('start 分词...')
docs_cut = [[jieba.lcut(sentence) for sentence in sentence_list] for sentence_list in docs_sentence_list]
print('end 分词, Cost time = {}'.format(time.time() - start_time))
return docs_cut
# 根据训练集生成 vocabulary,返回 fit 后的 tokenizer
def build_vocabulary_tokenizer(docs_cut):
vocabulary = []
for doc_sentence_list in docs_cut:
for sentence_list in doc_sentence_list:
for word in sentence_list:
vocabulary.append(word)
tokenizer = keras.preprocessing.text.Tokenizer()
tokenizer.fit_on_texts([vocabulary])
return tokenizer
# 根据fit后的tokenizer,将分词分句后的doc中的词替换成index
def index_docs_func(tokenizer, docs_cut):
index_docs = []
for doc_sentence_list in docs_cut:
index_docs.append(tokenizer.texts_to_sequences(doc_sentence_list))
return index_docs
def pad_docs(index_docs, doc_max_sentence_num, sentence_max_word_num, padding_value=0):
data = []
for doc in index_docs:
doc_data = []
for sentence in doc:
# 句子 word 数补齐成 sentence_max_word_num
if len(sentence) < sentence_max_word_num:
sentence.extend([padding_value] * (sentence_max_word_num - len(sentence)))
doc_data.append(sentence[:sentence_max_word_num])
# 每篇文章句子数补够 doc_max_sentence_num
if len(doc_data) < doc_max_sentence_num:
doc_data.extend([[padding_value] * sentence_max_word_num] * (doc_max_sentence_num - len(doc_data)))
data.append(doc_data[:doc_max_sentence_num])
data = np.array(data)
return data
def dump_data(data, file):
with open(file, 'wb') as f:
pickle.dump(data, f)
def load_data(file):
with open(file, 'rb') as f:
data = pickle.load(f)
return data