-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcombine_kernels.py
106 lines (97 loc) · 4.11 KB
/
combine_kernels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#!/usr/bin/env python
u"""
combine_kernels.py
by Yara Mohajerani
Combine the sensitivity kernels of the sum of the 'fixed points'
and produce netcdf and png outputs
Last Update 12/2020
"""
#-- load required modules
import os
import sys
import numpy as np
import geopandas as gpd
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
#-- also import gravity toolkit modules
from gravity_toolkit.ncdf_write import ncdf_write
from gravity_toolkit.ncdf_read import ncdf_read
#------------------------------------------------------------------------------
#-- create sensitivity kernels for given voronoi harmonics
#------------------------------------------------------------------------------
def combine_kernels(parameters):
DDEG_RASTER = float(parameters['DDEG_RASTER'])
#-- read harmonic parameters
LMAX = int(parameters['LMAX'])
#-- get output directory
ddir = os.path.expanduser(parameters['DIRECTORY'])
#-- smoothing radius
RAD = int(parameters['RAD'])
#-- ocn redistribution label
OCN = '_OCN' if parameters['MASCON_OCEAN'] in ['Y','y'] else ''
#-- load mascon configuration of interest
mascon_nums = np.array(parameters['MSCN_NUMS'].split(','),dtype=int)
mascon_name = parameters['MSCN_NAME']
out_lbl = '{0}_{1}'.format(mascon_name,parameters['MSCN_NUMS'].replace(',','+'))
#----------------------------------------------------------------------
#-- Read and sum up kernels corresponding to fixed points
#----------------------------------------------------------------------
kerns = {}
for i in mascon_nums:
#- read the netcdf files
kern_file = os.path.join(ddir,'MASCON_{0:d}_YLMS_{1:.2f}DEG_SKERNEL{2}_L{3:02d}_r{4:d}km.nc'.format(i,DDEG_RASTER,OCN,LMAX,RAD))
kerns[i] = ncdf_read(kern_file,DATE=False)
#-- sum up the kernels
kern_sum = kerns[mascon_nums[0]]['data']
for i in mascon_nums[1:]:
kern_sum += kerns[i]['data']
#-- get grid for saving combined sensitivity kernel
glat = kerns[mascon_nums[0]]['lat']
glon = kerns[mascon_nums[0]]['lon']
#----------------------------------------------------------------------
#-- write kernel sum to file
#----------------------------------------------------------------------
outfile = os.path.join(ddir,'MASCON_{0}_YLMS_{1:.2f}DEG_SKERNEL_OCN_L{2:02d}_r{3:d}km.nc'.format(out_lbl,DDEG_RASTER,LMAX,RAD))
ncdf_write(kern_sum,glon,glat,0,FILENAME=outfile,DATE=False,UNITS='unitless',LONGNAME='Sensitivity_Kernel')
#----------------------------------------------------------------------
#-- plot summed kernel
#----------------------------------------------------------------------
#-- load in world map for plotting in background
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
#-- plot summed kernel
fig, ax = plt.subplots(1,figsize = (10,6),dpi=100)
klim = np.max(np.abs(kern_sum))*0.95
c = ax.contourf(glon,glat,kern_sum,cmap='bwr',levels=np.linspace(-klim,klim,16))
#-- use an axis divider for the colorbar
drx = make_axes_locatable(ax)
cax = drx.append_axes("right", size="5%", pad=0.1)
cbar = fig.colorbar(c,cax=cax)
cbar.set_label('Sensitivity Kernel (min:{0:.1f}, max:{1:.1f})'.format(np.min(kern_sum),np.max(kern_sum)))
world.plot(ax=ax,alpha=0.3,fc='none',ec='k',linewidth=1.2,rasterized=True)
plt.tight_layout()
plt.savefig(outfile.replace('.nc','.png'),format='PNG')
plt.close(fig=fig)
#------------------------------------------------------------------------------
#-- main function
#------------------------------------------------------------------------------
def main():
if len(sys.argv) == 1:
sys.exit('No paramter file given')
else:
#-- read input files
input_files = sys.argv[1:]
parameters = {}
for infile in input_files:
#-- for each paramter file, extract parameters
fid = open(infile, 'r')
for fileline in fid:
part = fileline.split()
parameters[part[0]] = part[1]
fid.close()
#-- feed parameters to function to combine and plot kernels
combine_kernels(parameters)
#------------------------------------------------------------------------------
#-- run main program
#------------------------------------------------------------------------------
if __name__ == '__main__':
main()