forked from UKPLab/emnlp2018-april
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstage2_reinf_learning.py
81 lines (66 loc) · 2.86 KB
/
stage2_reinf_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from resources import PROCESSED_PATH,LEARNT_RANKER_PATH
from summariser.utils.reader import readSampleSummaries
from summariser.vector.vector_generator import Vectoriser
from summariser.rl.td_agent import *
from summariser.utils.evaluator import evaluateSummary
import os
def addResult(all_dic,result):
for metric in result:
if metric in all_dic:
all_dic[metric].append(result[metric])
else:
all_dic[metric] = [result[metric]]
def readLearntRank(dataset,topic,model_name,setting,vectors):
weights = []
path = os.path.join(LEARNT_RANKER_PATH,dataset,topic,'model{}-{}'.format(model_name,setting))
ff = open(path,'r')
for line in ff.readlines():
weights.append(float(line))
ff.close()
rewards = []
for vec in vectors:
rewards.append(np.dot(vec,weights))
return rewards
if __name__ == '__main__':
#parameters
rl_episode = 5000
strict = 5.0
dataset = 'DUC2001'
reward_type = 'rouge' # rouge, heuristic, learnt
base_length = 400
block_num = 1
learnt_rank_setting = None # for example: 'round100-queryRANDOM-postWeight0.5'
# read documents and ref. summaries
reader = CorpusReader(PROCESSED_PATH)
data = reader.get_data(dataset)
topic_cnt = 0
all_result_dic = {}
for topic,docs,models in data:
topic_cnt += 1
print('\n---TOPIC: {}---'.format(topic))
summaries, ref_values_dic, heuristic_values_list = readSampleSummaries(dataset,topic)
vec = Vectoriser(docs,base=base_length,block=block_num)
rl_agent = TDAgent(vec,summaries,rl_episode,strict)
if reward_type == 'rouge' or reward_type == 'learnt':
for model in models:
model_name = model[0].split('/')[-1].strip()
print('\n---ref {}---'.format(model_name))
if reward_type == 'rouge':
rewards = ref_values_dic[model_name]
else:
summary_vectors = vec.getSummaryVectors(summaries)
assert learnt_rank_setting is not None
rewards = readLearntRank(dataset,topic,model_name,learnt_rank_setting,summary_vectors)
summary = rl_agent(rewards)
result = evaluateSummary(summary,model)
addResult(all_result_dic,result)
for metric in result:
print('{} : {}'.format(metric,result[metric]))
elif reward_type == 'heuristic':
summary = rl_agent(heuristic_values_list)
for model in models:
result = evaluateSummary(summary,model)
addResult(all_result_dic,result)
print('\n=== RESULTS UNTIL TOPIC {}, EPISODE {}, base length 400 ===\n'.format(topic_cnt, rl_episode))
for metric in all_result_dic:
print('{} : {}'.format(metric, np.mean(all_result_dic[metric])))