-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproj04_classification.py
151 lines (108 loc) · 4.6 KB
/
proj04_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import numpy as np
from skimage.feature import hog
from sklearn.neighbors import NearestCentroid
import cv2
import os
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neural_network import MLPClassifier
def readFiles(type):
X = []
if type == "palm":
path = '/Users/eyangpc/PycharmProjects/StarterCode/palm/'
elif type == "notpalm":
path = '/Users/eyangpc/PycharmProjects/StarterCode/notpalm/'
else:
print('No such type!')
for filename in os.listdir(path):
X.append(cv2.imread(path + filename))
return X
def hog_transform(mat, which):
mat_hog = []
if which == 'fd':
for img in mat:
fd, hog_image = hog(img, orientations=8, pixels_per_cell=(16, 16),
cells_per_block=(1, 1), visualize=True, multichannel=True)
# img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# img = img.resize((width, height), Image.ANTIALIAS)
# img = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
# Xlbp.append(local_binary_pattern(img, n_points, radius, METHOD))
mat_hog.append(fd)
elif which == 'hog':
for img in mat:
fd, hog_image = hog(img, orientations=8, pixels_per_cell=(16, 16),
cells_per_block=(1, 1), visualize=True, multichannel=True)
mat_hog.append(hog_image)
mat_hog = np.array(mat_hog)
return mat_hog
# read images of palms and not palms
Xpalm = readFiles("palm")
Xnotpalm = readFiles("notpalm")
X = Xpalm + Xnotpalm
X = np.array(X)
y = []
for i in range(0, 111):
y.append('Palm')
for i in range(0, 190):
y.append('NotPalm')
# Xg = []
# for img in X:
# img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# Xg.append(img)
#
X_train_orig, X_test_orig, y_train, y_test = train_test_split(
X, y, test_size=0.25, random_state=2019)
# #############################################################################
X_train = hog_transform(X_train_orig, 'fd')
X_test = hog_transform(X_test_orig, 'fd')
# ########### Near Neighbors #################################################
print('--------- Near Neighbors ---------')
clfNear = KNeighborsClassifier(n_neighbors=8, weights='distance',
algorithm='auto', leaf_size=30, p=2)
clfNear.fit(X_train, y_train)
y_fit_near = clfNear.predict(X_test)
print(classification_report(y_test, y_fit_near))
print(confusion_matrix(y_test, y_fit_near))
for i in range(0, len(y_test)):
if y_test[i] != y_fit_near[i]:
print(i, 'miss matched')
# ########### Random Forest ##################################################
print('--------- Random Forest ---------')
clfRF = RandomForestClassifier(n_estimators=10, max_depth=None,
min_samples_split=2, random_state=210)
clfRF.fit(X_train, y_train)
y_fit_rf = clfRF.predict(X_test)
print(classification_report(y_test, y_fit_rf))
print(confusion_matrix(y_test, y_fit_rf))
# ########### Neural Network ##################################################
print('--------- Neural Network ---------')
clfNet = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=2100)
clfNet.fit(X_train, y_train)
y_fit_net = clfNet.predict(X_test)
print(classification_report(y_test, y_fit_net))
print(confusion_matrix(y_test, y_fit_net))
# ########## Support Vector Machine ###########################################
print('--------- linear SVM ---------')
clf = SVC(kernel='linear')
clf = clf.fit(X_train, y_train)
y_fit = clf.predict(X_test)
print(classification_report(y_test, y_fit))
print(confusion_matrix(y_test, y_fit))
print('--------- RBF SVM ---------')
clf = SVC(kernel='rbf', gamma='scale')
clf = clf.fit(X_train, y_train)
y_fit = clf.predict(X_test)
print(classification_report(y_test, y_fit))
print(confusion_matrix(y_test, y_fit))
for i in range(0, len(y_test)):
if y_test[i] != y_fit[i]:
print(i, 'miss matched')
# cv2.imwrite('/Users/eyangpc/PycharmProjects/StarterCode/mismatch/18.jpg', X_test_orig[18])
# cv2.imwrite('/Users/eyangpc/PycharmProjects/StarterCode/mismatch/32.jpg', X_test_orig[32])
# cv2.imwrite('/Users/eyangpc/PycharmProjects/StarterCode/mismatch/59.jpg', X_test_orig[59])
# cv2.imwrite('/Users/eyangpc/PycharmProjects/StarterCode/mismatch/61.jpg', X_test_orig[61])
# cv2.imwrite('/Users/eyangpc/PycharmProjects/StarterCode/mismatch/73.jpg', X_test_orig[73])