forked from rogerlinndesign/linnstrument-firmware
-
Notifications
You must be signed in to change notification settings - Fork 14
/
ls_arpeggiator.ino
423 lines (372 loc) · 15.2 KB
/
ls_arpeggiator.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
/***************************** ls_arpeggiator: LinnStrument Arpeggiator ****************************
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/
or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
***************************************************************************************************
These routines implement the internal LinnStrument arpeggiator. They closely work together with the
system clock when that is active and with the internal tracking of how notes map for each split to
the actual cell that was pressed, allowing velocity to be continuously varied during the arpeggiator
sequence.
***************************************************************************************************/
signed char lastArpNote[NUMSPLITS]; // the last note played by the arpeggiator or -1 if it should be starting from scratch
signed char lastArpChannel[NUMSPLITS]; // the last channel played by the arpeggiator or -1 if it should be starting from scratch
boolean lastArpStepOdd[NUMSPLITS]; // indicates whether the last arpeggiator step was odd (1-based : 1, 3, 5)
ArpeggiatorDirection arpUpDownState[NUMSPLITS]; // the state in the alternating up/down pattern
signed char arpOctaveState[NUMSPLITS]; // the octave that is used while playing the arpeggiator sequence
unsigned long lastTapTempo = 0;
#define MICROS_PER_MINUTE 60000000UL
void initializeArpeggiator() {
randomSeed(analogRead(0));
for (byte split = 0; split < NUMSPLITS; ++split) {
noteTouchMapping[split].initialize();
resetArpeggiatorState(split);
}
}
void resetArpeggiatorState(byte split) {
lastArpNote[split] = -1;
lastArpChannel[split] = -1;
lastArpStepOdd[split] = false;
arpUpDownState[split] = ArpUp;
arpOctaveState[split] = 0;
}
byte getArpeggiatorNote(byte split, byte notenum) {
return getOctaveNote(arpOctaveState[split], notenum);
}
byte getOctaveNote(byte octave, byte notenum) {
return notenum + (octave * 12);
}
void temporarilyEnableArpeggiator() {
arpTempoDelta[sensorSplit] = 0;
midiSendNoteOffForAllTouches(sensorSplit);
resetArpeggiatorState(sensorSplit);
}
void disableTemporaryArpeggiator() {
turnArpeggiatorOff(sensorSplit);
}
void handleArpeggiatorNoteOff(byte split, byte notenum, byte channel) {
// handle replay all differently since it plays multiple notes simultaneously
if (Global.arpDirection == ArpReplayAll) {
if (lastArpNote[split] != -1) {
for (byte octave = 0; octave <= Global.arpOctave; ++octave) {
midiSendNoteOff(split, getOctaveNote(octave, notenum), channel);
}
}
}
// if this is a strummed note, always turn all octave notes off
else if (isStrummedSplit(split)) {
for (byte octave = 0; octave <= Global.arpOctave; ++octave) {
midiSendNoteOff(split, getOctaveNote(octave, notenum), channel);
}
}
// handle single note sequences, send the note off and reset the arpeggiator state if the note off was the last played
else if (lastArpNote[split] == notenum && lastArpChannel[split] == channel) {
midiSendNoteOff(split, getArpeggiatorNote(split, notenum), channel);
resetArpeggiatorState(split);
}
// reset state when no notes are played at all anymore
if (noteTouchMapping[split].noteCount == 0) {
resetArpeggiatorState(split);
}
}
void turnArpeggiatorOff(byte split) {
sendArpeggiatorStepMidiOff(split);
resetArpeggiatorState( split);
}
void sendArpeggiatorStepMidiOff(byte split) {
if (lastArpNote[split] != -1) {
if (Global.arpDirection == ArpReplayAll) {
if (noteTouchMapping[split].noteCount > 0) {
signed char arpNote = noteTouchMapping[split].firstNote;
signed char arpChannel = noteTouchMapping[split].firstChannel;
while (arpNote != -1) {
for (byte octave = 0; octave <= Global.arpOctave; ++octave) {
midiSendNoteOff(split, getOctaveNote(octave, arpNote), arpChannel);
}
NoteEntry* entry = noteTouchMapping[split].getNoteEntry(arpNote, arpChannel);
if (entry == NULL) {
arpNote = -1;
}
else {
arpNote = entry->getNextNote();
arpChannel = entry->getNextChannel();
}
}
}
}
else {
midiSendNoteOff(split, getArpeggiatorNote(split, lastArpNote[split]), lastArpChannel[split]);
}
}
}
inline void checkAdvanceArpeggiator() {
checkAdvanceArpeggiatorForSplit(LEFT);
checkAdvanceArpeggiatorForSplit(RIGHT);
}
byte arpTempoChoices[9] {
24, // ArpFourth
12, // ArpEighth
8, // ArpEighthTriplet
6, // ArpSixteenth
TEMPO_ARP_SIXTEENTH_SWING, // ArpSixteenthSwing
4, // ArpSixteenthTriplet
3, // ArpThirtysecond
2, // ArpThirtysecondTriplet
1 // ArpSixtyfourthTriplet
};
inline void checkAdvanceArpeggiatorForSplit(byte split) {
if (isArpeggiatorEnabled(split)) {
byte combinedTempoIndex = constrain(Global.arpTempo + arpTempoDelta[split], 0, 8);
byte combinedTempo = arpTempoChoices[combinedTempoIndex];
if ((combinedTempo == TEMPO_ARP_SIXTEENTH_SWING && ((clock24PPQ % 12 == 0) || (clock24PPQ % 12 == 7))) || // we need to handle swing differently since it's irregular
(combinedTempo != TEMPO_ARP_SIXTEENTH_SWING && (clock24PPQ % combinedTempo == 0 ))) {
advanceArpeggiatorForSplit(split);
}
}
}
void advanceArpeggiatorForSplit(byte split) {
signed char arpNote = -1;
signed char arpChannel = -1;
sendArpeggiatorStepMidiOff(split);
// handle replayAll differently since it plays multiple notes simultaneously
if (Global.arpDirection == ArpReplayAll) {
if (noteTouchMapping[split].noteCount > 0) {
// send all the note ons
arpNote = noteTouchMapping[split].firstNote;
arpChannel = noteTouchMapping[split].firstChannel;
while (arpNote != -1) {
NoteEntry* entry = noteTouchMapping[split].getNoteEntry(arpNote, arpChannel);
if (entry == NULL) {
arpNote = -1;
}
else {
for (byte octave = 0; octave <= Global.arpOctave; ++octave) {
// after the initial velocity, new velocity values are continuously being calculated simply based
// on the Z data so that velocity can change during the arpeggiation
TouchInfo* entry_cell = &cell(entry->getCol(), entry->getRow());
if (entry_cell->touched == touchedCell) {
entry_cell->velocity = calcPreferredVelocity(entry_cell->velocityZ);
}
midiSendNoteOn(split, getOctaveNote(octave, arpNote), entry_cell->velocity, arpChannel);
}
arpNote = entry->getNextNote();
arpChannel = entry->getNextChannel();
}
}
lastArpNote[split] = noteTouchMapping[split].firstNote;
lastArpChannel[split] = noteTouchMapping[split].firstChannel;
lastArpStepOdd[split] = !lastArpStepOdd[split];
}
else {
lastArpNote[split] = -1;
lastArpChannel[split] = -1;
}
}
// handle single note sequences
else {
if (noteTouchMapping[split].noteCount > 0) {
switch (Global.arpDirection) {
// sequence steps upwards
case ArpUp:
{
if (lastArpNote[split] == -1) {
arpNote = noteTouchMapping[split].firstNote;
arpChannel = noteTouchMapping[split].firstChannel;
}
else {
NoteEntry* lastEntry = noteTouchMapping[split].getNoteEntry(lastArpNote[split], lastArpChannel[split]);
if (lastEntry == NULL) {
arpNote = -1;
}
else {
arpNote = lastEntry->getNextNote();
arpChannel = lastEntry->getNextChannel();
}
// start again from the beginning
if (arpNote == -1) {
arpNote = noteTouchMapping[split].firstNote;
arpChannel = noteTouchMapping[split].firstChannel;
if (++arpOctaveState[split] > Global.arpOctave) {
arpOctaveState[split] = 0;
}
}
}
break;
}
// sequence steps downwards
case ArpDown:
{
if (lastArpNote[split] == -1) {
arpNote = noteTouchMapping[split].lastNote;
arpChannel = noteTouchMapping[split].lastChannel;
}
else {
NoteEntry* lastEntry = noteTouchMapping[split].getNoteEntry(lastArpNote[split], lastArpChannel[split]);
if (lastEntry == NULL) {
arpNote = -1;
}
else {
arpNote = lastEntry->getPreviousNote();
arpChannel = lastEntry->getPreviousChannel();
}
// start again from the end
if (arpNote == -1) {
arpNote = noteTouchMapping[split].lastNote;
arpChannel = noteTouchMapping[split].lastChannel;
if (++arpOctaveState[split] > Global.arpOctave) {
arpOctaveState[split] = 0;
}
}
}
break;
}
// sequence steps alternativing upwards and downwards
case ArpUpDown:
{
if (lastArpNote[split] == -1) {
arpUpDownState[split] = ArpUp;
arpNote = noteTouchMapping[split].firstNote;
arpChannel = noteTouchMapping[split].firstChannel;
}
else {
NoteEntry* lastEntry = noteTouchMapping[split].getNoteEntry(lastArpNote[split], lastArpChannel[split]);
if (lastEntry == NULL) {
arpNote = -1;
}
else {
if (arpUpDownState[split] == ArpDown) {
arpNote = lastEntry->getPreviousNote();
arpChannel = lastEntry->getPreviousChannel();
}
else {
arpNote = lastEntry->getNextNote();
arpChannel = lastEntry->getNextChannel();
}
}
// change directions
if (arpNote == -1) {
// handle the state where there's only one note active
if (noteTouchMapping[split].firstNote == noteTouchMapping[split].lastNote &&
noteTouchMapping[split].firstChannel == noteTouchMapping[split].lastChannel) {
arpNote = noteTouchMapping[split].firstNote;
arpChannel = noteTouchMapping[split].firstChannel;
if (Global.arpOctave != 0) {
if (arpUpDownState[split] == ArpUp) {
if (arpOctaveState[split] != Global.arpOctave) {
arpOctaveState[split]++;
}
else {
arpOctaveState[split]--;
arpUpDownState[split] = ArpDown;
}
}
else if (arpUpDownState[split] == ArpDown) {
if (arpOctaveState[split] != 0) {
arpOctaveState[split]--;
}
else {
arpOctaveState[split]++;
arpUpDownState[split] = ArpUp;
}
}
}
}
// when there's no octave switching, wrap around without repeated notes
// otherwise continue on the next octave if needed this follows the active direction and wrap around when reaching a boundary
else {
if (arpUpDownState[split] == ArpUp) {
if (arpOctaveState[split] != Global.arpOctave) {
arpNote = noteTouchMapping[split].firstNote;
arpChannel = noteTouchMapping[split].firstChannel;
arpOctaveState[split]++;
}
else {
arpUpDownState[split] = ArpDown;
NoteEntry* entry = noteTouchMapping[split].getNoteEntry(noteTouchMapping[split].lastNote, noteTouchMapping[split].lastChannel);
if (entry == NULL) {
arpNote = -1;
}
else {
arpNote = entry->getPreviousNote();
arpChannel = entry->getPreviousChannel();
}
}
}
else if (arpUpDownState[split] == ArpDown) {
if (arpOctaveState[split] != 0) {
arpNote = noteTouchMapping[split].lastNote;
arpChannel = noteTouchMapping[split].lastChannel;
arpOctaveState[split]--;
}
else {
arpUpDownState[split] = ArpUp;
NoteEntry* entry = noteTouchMapping[split].getNoteEntry(noteTouchMapping[split].firstNote, noteTouchMapping[split].firstChannel);
if (entry == NULL) {
arpNote = -1;
}
else {
arpNote = entry->getNextNote();
arpChannel = entry->getNextChannel();
}
}
}
}
}
}
break;
}
// sequence steps randomly
case ArpRandom:
{
long pos = random(noteTouchMapping[split].noteCount);
arpNote = noteTouchMapping[split].firstNote;
arpChannel = noteTouchMapping[split].firstChannel;
while (arpNote != -1 && pos-- != 0) {
NoteEntry* entry = noteTouchMapping[split].getNoteEntry(arpNote, arpChannel);
if (entry == NULL) {
arpNote = -1;
}
else {
arpNote = entry->getNextNote();
arpChannel = entry->getNextChannel();
}
}
if (Global.arpOctave) {
arpOctaveState[split] = random(Global.arpOctave + 1);
}
break;
}
case ArpReplayAll:
// handled above, at the beginning of the function
break;
}
if (arpNote != -1) {
// if this is the first step in a new sequence, this will be an odd step (starting at one)
if (lastArpNote[split] == -1) {
lastArpStepOdd[split] = true;
}
else {
lastArpStepOdd[split] = !lastArpStepOdd[split];
}
// send the MIDI note
NoteEntry* entry = noteTouchMapping[split].getNoteEntry(arpNote, arpChannel);
if (entry == NULL) {
arpNote = -1;
}
else {
// after the initial velocity, new velocity values are continuously being calculated simply based
// on the Z data so that velocity can change during the arpeggiation
TouchInfo* entry_cell = &cell(entry->getCol(), entry->getRow());
if (entry_cell->touched == touchedCell) {
entry_cell->velocity = calcPreferredVelocity(entry_cell->velocityZ);
}
midiSendNoteOn(split, getArpeggiatorNote(split, arpNote), entry_cell->velocity, arpChannel);
}
}
lastArpNote[split] = arpNote;
lastArpChannel[split] = arpChannel;
}
}
}
inline boolean isArpeggiatorEnabled(byte split) {
return Split[split].arpeggiator || isLowRowArpeggiatorPressed(split);
}