Skip to content

Latest commit

 

History

History
299 lines (240 loc) · 8.46 KB

0055.跳跃游戏.md

File metadata and controls

299 lines (240 loc) · 8.46 KB

参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们受益!

55. 跳跃游戏

力扣题目链接

给定一个非负整数数组,你最初位于数组的第一个位置。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个位置。

示例  1:

  • 输入: [2,3,1,1,4]
  • 输出: true
  • 解释: 我们可以先跳 1 步,从位置 0 到达 位置 1, 然后再从位置 1 跳 3 步到达最后一个位置。

示例  2:

  • 输入: [3,2,1,0,4]
  • 输出: false
  • 解释: 无论怎样,你总会到达索引为 3 的位置。但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置。

算法公开课

《代码随想录》算法视频公开课贪心算法,怎么跳跃不重要,关键在覆盖范围 | LeetCode:55.跳跃游戏,相信结合视频在看本篇题解,更有助于大家对本题的理解

思路

刚看到本题一开始可能想:当前位置元素如果是 3,我究竟是跳一步呢,还是两步呢,还是三步呢,究竟跳几步才是最优呢?

其实跳几步无所谓,关键在于可跳的覆盖范围!

不一定非要明确一次究竟跳几步,每次取最大的跳跃步数,这个就是可以跳跃的覆盖范围。

这个范围内,别管是怎么跳的,反正一定可以跳过来。

那么这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!

每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。

贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点

局部最优推出全局最优,找不出反例,试试贪心!

如图:

i 每次移动只能在 cover 的范围内移动,每移动一个元素,cover 得到该元素数值(新的覆盖范围)的补充,让 i 继续移动下去。

而 cover 每次只取 max(该元素数值补充后的范围, cover 本身范围)。

如果 cover 大于等于了终点下标,直接 return true 就可以了。

C++代码如下:

class Solution {
public:
    bool canJump(vector<int>& nums) {
        int cover = 0;
        if (nums.size() == 1) return true; // 只有一个元素,就是能达到
        for (int i = 0; i <= cover; i++) { // 注意这里是小于等于cover
            cover = max(i + nums[i], cover);
            if (cover >= nums.size() - 1) return true; // 说明可以覆盖到终点了
        }
        return false;
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(1)

总结

这道题目关键点在于:不用拘泥于每次究竟跳几步,而是看覆盖范围,覆盖范围内一定是可以跳过来的,不用管是怎么跳的。

大家可以看出思路想出来了,代码还是非常简单的。

一些同学可能感觉,我在讲贪心系列的时候,题目和题目之间貌似没有什么联系?

是真的就是没什么联系,因为贪心无套路!没有个整体的贪心框架解决一系列问题,只能是接触各种类型的题目锻炼自己的贪心思维!

其他语言版本

Java

class Solution {
    public boolean canJump(int[] nums) {
        if (nums.length == 1) {
            return true;
        }
        //覆盖范围, 初始覆盖范围应该是0,因为下面的迭代是从下标0开始的
        int coverRange = 0;
        //在覆盖范围内更新最大的覆盖范围
        for (int i = 0; i <= coverRange; i++) {
            coverRange = Math.max(coverRange, i + nums[i]);
            if (coverRange >= nums.length - 1) {
                return true;
            }
        }
        return false;
    }
}

Python

class Solution:
    def canJump(self, nums: List[int]) -> bool:
        cover = 0
        if len(nums) == 1: return True
        i = 0
        # python不支持动态修改for循环中变量,使用while循环代替
        while i <= cover:
            cover = max(i + nums[i], cover)
            if cover >= len(nums) - 1: return True
            i += 1
        return False
## for循环
class Solution:
    def canJump(self, nums: List[int]) -> bool:
        cover = 0
        if len(nums) == 1: return True
        for i in range(len(nums)):
            if i <= cover:
                cover = max(i + nums[i], cover)
                if cover >= len(nums) - 1: return True
        return False
## 基于当前最远可到达位置判断
class Solution:
    def canJump(self, nums: List[int]) -> bool:
        far = nums[0]
        for i in range(len(nums)):
            # 要考虑两个情况
            # 1. i <= far - 表示 当前位置i 可以到达
            # 2. i > far - 表示 当前位置i 无法到达
            if i > far:
                return False
            far = max(far, nums[i]+i)
        # 如果循环正常结束,表示最后一个位置也可以到达,否则会在中途直接退出
        # 关键点在于,要想明白其实列表中的每个位置都是需要验证能否到达的
        return True

Go

// 贪心
func canJump(nums []int) bool {
    cover := 0
    n := len(nums)-1
    for i := 0; i <= cover; i++ { // 每次与覆盖值比较
        cover = max(i+nums[i], cover) //每走一步都将 cover 更新为最大值
        if cover >= n {
            return true
        }
    }
    return false
}
func max(a, b int ) int {
    if a > b {
        return a
    }
    return b
}

Javascript

var canJump = function(nums) {
    if(nums.length === 1) return true
    let cover = 0
    for(let i = 0; i <= cover; i++) {
        cover = Math.max(cover, i + nums[i])
        if(cover >= nums.length - 1) {
            return true
        }
    }
    return false
};

Rust

impl Solution {
    pub fn can_jump(nums: Vec<i32>) -> bool {
        if nums.len() == 1 {
            return true;
        }
        let (mut i, mut cover) = (0, 0);
        while i <= cover {
            cover = (i + nums[i] as usize).max(cover);
            if cover >= nums.len() - 1 {
                return true;
            }
            i += 1;
        }
        false
    }
}

C

#define max(a, b) (((a) > (b)) ? (a) : (b))

bool canJump(int* nums, int numsSize){
    int cover = 0;

    int i;
    // 只可能获取cover范围中的步数,所以i<=cover
    for(i = 0; i <= cover; ++i) {
        // 更新cover为从i出发能到达的最大值/cover的值中较大值
        cover = max(i + nums[i], cover);

        // 若更新后cover可以到达最后的元素,返回true
        if(cover >= numsSize - 1)
            return true;
    }

    return false;
}

TypeScript

function canJump(nums: number[]): boolean {
  let farthestIndex: number = 0;
  let cur: number = 0;
  while (cur <= farthestIndex) {
    farthestIndex = Math.max(farthestIndex, cur + nums[cur]);
    if (farthestIndex >= nums.length - 1) return true;
    cur++;
  }
  return false;
}

Scala

object Solution {
  def canJump(nums: Array[Int]): Boolean = {
    var cover = 0
    if (nums.length == 1) return true // 如果只有一个元素,那么必定到达
    var i = 0
    while (i <= cover) { // i表示下标,当前只能够走cover步
      cover = math.max(i + nums(i), cover)
      if (cover >= nums.length - 1) return true // 说明可以覆盖到终点,直接返回
      i += 1
    }
    false // 如果上面没有返回就是跳不到
  }
}

C#

public class Solution
{
    public bool CanJump(int[] nums)
    {
        int cover = 0;
        if (nums.Length == 1) return true;
        for (int i = 0; i <= cover; i++)
        {
            cover = Math.Max(i + nums[i], cover);
            if (cover >= nums.Length - 1) return true;
        }
        return false;
    }
}