forked from syne-tune/syne-tune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlaunch_height_sagemaker.py
97 lines (88 loc) · 3.09 KB
/
launch_height_sagemaker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
"""
Example showing how to run on Sagemaker with a Sagemaker Framework.
"""
import logging
import os
from pathlib import Path
from sagemaker.pytorch import PyTorch
from syne_tune import Tuner, StoppingCriterion
from syne_tune.backend import SageMakerBackend
from syne_tune.backend.sagemaker_backend.sagemaker_utils import (
get_execution_role,
default_sagemaker_session,
)
from syne_tune.config_space import randint
from examples.training_scripts.height_example.train_height import (
METRIC_ATTR,
METRIC_MODE,
MAX_RESOURCE_ATTR,
)
from syne_tune.optimizer.baselines import RandomSearch
from syne_tune.remote.estimators import (
PYTORCH_LATEST_FRAMEWORK,
PYTORCH_LATEST_PY_VERSION,
DEFAULT_CPU_INSTANCE_SMALL,
)
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
random_seed = 31415927
max_steps = 100
n_workers = 4
max_wallclock_time = 5 * 60
config_space = {
MAX_RESOURCE_ATTR: max_steps,
"width": randint(0, 20),
"height": randint(-100, 100),
}
entry_point = (
Path(__file__).parent
/ "training_scripts"
/ "height_example"
/ "train_height.py"
)
# Random search without stopping
scheduler = RandomSearch(
config_space, mode=METRIC_MODE, metric=METRIC_ATTR, random_seed=random_seed
)
if "AWS_DEFAULT_REGION" not in os.environ:
os.environ["AWS_DEFAULT_REGION"] = "us-west-2"
trial_backend = SageMakerBackend(
# we tune a PyTorch Framework from Sagemaker
sm_estimator=PyTorch(
instance_type=DEFAULT_CPU_INSTANCE_SMALL,
instance_count=1,
framework_version=PYTORCH_LATEST_FRAMEWORK,
py_version=PYTORCH_LATEST_PY_VERSION,
entry_point=str(entry_point),
role=get_execution_role(),
max_run=10 * 60,
sagemaker_session=default_sagemaker_session(),
disable_profiler=True,
debugger_hook_config=False,
),
# names of metrics to track. Each metric will be detected by Sagemaker if it is written in the
# following form: "[RMSE]: 1.2", see in train_main_example how metrics are logged for an example
metrics_names=[METRIC_ATTR],
)
stop_criterion = StoppingCriterion(max_wallclock_time=max_wallclock_time)
tuner = Tuner(
trial_backend=trial_backend,
scheduler=scheduler,
stop_criterion=stop_criterion,
n_workers=n_workers,
sleep_time=5.0,
tuner_name="hpo-hyperband",
)
tuner.run()