forked from syne-tune/syne-tune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlaunch_tuning_gluonts.py
114 lines (102 loc) · 3.84 KB
/
launch_tuning_gluonts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
"""
This launches an HPO tuning several hyperparameters of a gluonts model.
To run this example locally, you need to have installed dependencies in ``requirements.txt`` in your current interpreter.
"""
import logging
from pathlib import Path
import numpy as np
from sagemaker.mxnet import MXNet
from syne_tune import Tuner, StoppingCriterion
from syne_tune.backend import LocalBackend, SageMakerBackend
from syne_tune.backend.sagemaker_backend.sagemaker_utils import (
get_execution_role,
default_sagemaker_session,
)
from syne_tune.config_space import loguniform, lograndint
from syne_tune.optimizer.baselines import ASHA
from syne_tune.remote.estimators import (
DEFAULT_CPU_INSTANCE,
MXNET_LATEST_VERSION,
MXNET_LATEST_PY_VERSION,
)
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
np.random.seed(0)
epochs = 50
n_workers = 4
mode = "min"
metric = "mean_wQuantileLoss"
max_resource_attr = "epochs"
config_space = {
"lr": loguniform(1e-4, 1e-1),
"num_cells": lograndint(lower=1, upper=80),
"num_layers": lograndint(lower=1, upper=10),
max_resource_attr: epochs,
"dataset": "electricity"
# "dataset": "m4_hourly"
}
entry_point = (
Path(__file__).parent / "training_scripts" / "gluonts" / "train_gluonts.py"
)
# Note: In order to run this locally (value False), you need to have GluonTS and its
# dependencies installed
evaluate_trials_on_sagemaker = True
if evaluate_trials_on_sagemaker:
# Evaluate trials on Sagemaker
trial_backend = SageMakerBackend(
sm_estimator=MXNet(
framework_version=MXNET_LATEST_VERSION,
py_version=MXNET_LATEST_PY_VERSION,
entry_point=entry_point.name,
source_dir=str(entry_point.parent),
instance_type=DEFAULT_CPU_INSTANCE,
instance_count=1,
role=get_execution_role(),
max_run=10 * 60,
base_job_name="hpo-gluonts",
sagemaker_session=default_sagemaker_session(),
disable_profiler=True,
debugger_hook_config=False,
),
metrics_names=[metric],
)
else:
# evaluate trials locally, replace with SageMakerBackend to evaluate trials on Sagemaker
trial_backend = LocalBackend(entry_point=str(entry_point))
# Use asynchronous successive halving (ASHA)
scheduler = ASHA(
config_space,
metric=metric,
max_resource_attr=max_resource_attr,
resource_attr="epoch_no",
)
max_wallclock_time = (
3000 if evaluate_trials_on_sagemaker else 600
) # wall clock time can be increased to 1 hour for more performance
dollar_cost_budget = 20.0
tuner = Tuner(
trial_backend=trial_backend,
scheduler=scheduler,
# stops if wallclock time or dollar-cost exceeds budget,
# dollar-cost is only available when running on Sagemaker
stop_criterion=StoppingCriterion(
max_wallclock_time=max_wallclock_time, max_cost=dollar_cost_budget
),
n_workers=n_workers,
# some failures may happen when SGD diverges with NaNs
max_failures=10,
)
# launch the tuning
tuner.run()