-
Notifications
You must be signed in to change notification settings - Fork 28
Open
Description
在`def model_init(model, X, y, A_norm):
"""
load the pre-train model and calculate similarity and cluster centers
Args:
model: Dual Correlation Reduction Network
X: input feature matrix
y: input label
A_norm: normalized adj
Returns: embedding similarity matrix
"""
# load pre-train model
model = load_pretrain_parameter(model)
# calculate embedding similarity
with torch.no_grad():
_, _, _, sim, _, _, _, Z, _, _ = model(X, A_norm, X, A_norm)
# calculate cluster centers
acc, nmi, ari, f1, centers = clustering(Z, y)
return sim, centers`中
_, _, _, sim, _, _, _, Z, _, _ = model(X, A_norm, X, A_norm)中X,A_norm出现了两次
在传入forward(self, X_tilde1, Am, X_tilde2, Ad)函数时是应该是x1一波和x2一波,

这样的话取平均好像好不取平均是一样的了 Z_ae = (Z_ae1 + Z_ae2) / 2
Z_igae = (Z_igae1 + Z_igae2) / 2
这个地方不太理解,可以解答一下吗?
Metadata
Metadata
Assignees
Labels
No labels