forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
irparser.cpp
444 lines (400 loc) · 11 KB
/
irparser.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
#include <torch/csrc/jit/irparser.h>
#include <torch/csrc/jit/ir.h>
#include <torch/csrc/jit/script/lexer.h>
#include <torch/csrc/jit/script/parse_string_literal.h>
#include <torch/csrc/jit/script/schema_type_parser.h>
#include <string>
#include <vector>
namespace torch {
namespace jit {
namespace script {
struct VarWithType;
struct ParsedLiteral;
class IRParser {
friend void parseIR(
const std::string& str,
torch::jit::Graph* graph,
std::unordered_map<std::string, Value*>& vmap);
IRParser(
const std::string& str,
torch::jit::Graph* graph,
std::unordered_map<std::string, Value*>& vmap)
: L(std::make_shared<Source>(str)),
g(graph),
vmap(vmap),
type_parser(L, /*parse_complete_tensor_types*/ true) {}
std::string parseVar();
VarWithType parseVarWithType();
ParsedLiteral parseScalarLiteral(Node* n);
void parse();
void parseGraphInputs();
void parseReturnOperator();
void parseBlocks(Node* parentNode);
void parseBlock(Node* parentNode);
void parseBlockInputs(Block* b);
void parseBlockOutputs(Block* b);
void parseOperatorsList(Block* b);
void parseOperator(Block* b);
void parseOperatorOutputs(std::vector<VarWithType>* outs);
std::string parseOperatorName();
void parseOperatorInputs(Node* n);
void parseAttrs(Node* n);
void parseAttr(Node* n);
void parseList(
int begin,
int sep,
int end,
const std::function<void()>& callback);
torch::jit::script::Lexer L;
torch::jit::Graph* g = nullptr;
std::unordered_map<std::string, Value*>& vmap;
SchemaTypeParser type_parser;
};
struct ParsedLiteral {
ParsedLiteral() = default;
AttributeKind k = AttributeKind::t;
int64_t i = 0;
std::string s = "";
double f = 0.0;
std::vector<int64_t> is;
std::vector<std::string> ss;
std::vector<double> fs;
};
struct VarWithType {
VarWithType() = default;
std::string name;
TypePtr type;
};
void parseIR(
const std::string& str,
torch::jit::Graph* graph,
std::unordered_map<std::string, Value*>& vmap) {
torch::jit::script::IRParser p(str, graph, vmap);
p.parse();
}
void parseIR(const std::string& str, torch::jit::Graph* graph) {
std::unordered_map<std::string, Value*> vmap;
parseIR(str, graph, vmap);
}
VarWithType IRParser::parseVarWithType() {
VarWithType r;
r.name = parseVar();
r.type = TensorType::get();
if (L.nextIf(':')) {
auto type_alias = type_parser.parseType();
AT_ASSERTM(!type_alias.second, "Parsing IR with Alias Info not handled");
r.type = type_alias.first;
}
return r;
}
std::string IRParser::parseVar() {
L.expect('%');
if (L.cur().kind == TK_IDENT) {
auto name = L.expect(TK_IDENT).text();
if (L.cur().kind == TK_NUMBER) {
auto suffix = L.expect(TK_NUMBER).text();
AT_ASSERT(suffix[0] == '.');
name += suffix;
}
return name;
} else {
return L.expect(TK_NUMBER).text();
}
}
void IRParser::parseOperatorOutputs(std::vector<VarWithType>* outs) {
if (L.cur().kind != '%') {
return;
}
parseList(TK_NOTHING, ',', TK_NOTHING, [&] {
outs->push_back(parseVarWithType());
});
L.expect('=');
}
// Parse string or numeric literal and return it along with its type.
ParsedLiteral IRParser::parseScalarLiteral(Node* n) {
auto token = L.cur();
std::string str;
ParsedLiteral r;
switch (token.kind) {
case TK_STRINGLITERAL:
r.k = AttributeKind::s;
r.s = parseStringLiteral(token.range, token.text());
L.next();
return r;
case '-':
str = "-";
L.next();
L.expect(TK_NUMBER);
// Fallthrough
case TK_NUMBER:
str += L.cur().text();
if (str.find('.') != std::string::npos ||
str.find('e') != std::string::npos) {
r.k = AttributeKind::f;
r.f = std::stod(str);
} else {
r.k = AttributeKind::i;
r.i = std::stoll(str);
}
L.next();
return r;
default:
throw ErrorReport(token.range)
<< "Could not parse literal" << token.text();
}
}
/** \brief Parse attribute and add it to the node N.
*
* The function determines the attribute type (string, int, float, list of
* strings, list of ints, list of floats, and a list of tensors (currently only
* for empty lists)).
* An attribute looks like the following:
* AttrName=AttrValue
* Where AttrValue can be a list or a scalar literal, e.g.:
* size = 27
* name = "Bob"
* coefs = [1.2, 3.4, 0.6]
*/
void IRParser::parseAttr(Node* n) {
std::string attrname = L.expect(TK_IDENT).text();
L.expect('=');
if (L.cur().kind == '[') {
// list
AttributeKind k = AttributeKind::ts;
std::vector<int64_t> is;
std::vector<std::string> ss;
std::vector<double> fs;
int elem_num = 0;
parseList('[', ',', ']', [&] {
ParsedLiteral r = parseScalarLiteral(n);
switch (r.k) {
case AttributeKind::s:
ss.push_back(r.s);
AT_ASSERT(!elem_num++ || k == AttributeKind::ss);
k = AttributeKind::ss;
break;
case AttributeKind::i:
is.push_back(r.i);
AT_ASSERT(!elem_num++ || k == AttributeKind::is);
k = AttributeKind::is;
break;
case AttributeKind::f:
fs.push_back(r.f);
AT_ASSERT(!elem_num++ || k == AttributeKind::fs);
k = AttributeKind::fs;
break;
default:
throw ErrorReport(L.cur().range) << "Unexpected attr type";
}
});
switch (k) {
case AttributeKind::ts:
n->ts_(Symbol::attr(attrname), {});
break;
case AttributeKind::ss:
n->ss_(Symbol::attr(attrname), ss);
break;
case AttributeKind::fs:
n->fs_(Symbol::attr(attrname), fs);
break;
case AttributeKind::is:
n->is_(Symbol::attr(attrname), is);
break;
default:
throw ErrorReport(L.cur().range) << "Unexpected attr type";
}
} else {
// scalar
ParsedLiteral r = parseScalarLiteral(n);
switch (r.k) {
case AttributeKind::s:
n->s_(Symbol::attr(attrname), r.s);
break;
case AttributeKind::i:
n->i_(Symbol::attr(attrname), r.i);
break;
case AttributeKind::f:
n->f_(Symbol::attr(attrname), r.f);
break;
default:
throw ErrorReport(L.cur().range) << "Unexpected attr type";
}
return;
}
}
void IRParser::parseAttrs(Node* n) {
parseList('[', ',', ']', [&] { parseAttr(n); });
}
void IRParser::parseOperatorInputs(Node* n) {
if (L.cur().kind == '[') {
parseAttrs(n);
}
parseList('(', ',', ')', [&] {
std::string var_name = parseVar();
AT_ASSERT(vmap.count(var_name));
n->addInput(vmap[var_name]);
});
}
void IRParser::parseBlocks(Node* parentNode) {
L.expect(TK_INDENT);
while (L.cur().kind != TK_DEDENT) {
parseBlock(parentNode);
}
L.expect(TK_DEDENT);
}
void IRParser::parseBlockInputs(Block* b) {
parseList('(', ',', ')', [&] {
VarWithType v = parseVarWithType();
// If the name isn't valid, don't use it
std::string uniq_name = Value::isValidName(v.name) ? v.name : "";
vmap[v.name] = b->addInput(uniq_name);
vmap[v.name]->setType(v.type);
});
}
void IRParser::parseBlockOutputs(Block* b) {
L.expect(TK_ARROW);
parseList('(', ',', ')', [&] {
std::string var_name = parseVar();
AT_ASSERT(vmap.count(var_name));
b->registerOutput(vmap[var_name]);
});
L.expect(TK_NEWLINE);
L.expect(TK_DEDENT);
}
/** \brief Parse a block.
*
* It should look like the following:
* blockName(input1, input2, input3, ...):
* op1
* op2
* ...
* opN
* -> (output1, output2, output3, ...)
*/
void IRParser::parseBlock(Node* parentNode) {
Block* b = parentNode->addBlock();
L.expect(TK_IDENT).text(); // Block name is not used anywhere.
parseBlockInputs(b);
L.expect(':');
parseOperatorsList(b);
parseBlockOutputs(b);
}
/** \brief Parse a list of statements.
*
* It is expected to be delimited by TK_NEWLINE and end with TK_RETURN or
* TK_ARROW.
*/
void IRParser::parseOperatorsList(Block* b) {
L.expect(TK_INDENT);
while (L.cur().kind != TK_ARROW && L.cur().kind != TK_RETURN) {
parseOperator(b);
}
}
std::string IRParser::parseOperatorName() {
std::string name = L.expect(TK_IDENT).text();
L.expect(':');
L.expect(':');
name += "::" + L.expect(TK_IDENT).text();
return name;
}
/** \brief Parse a statement.
*
* It should look like the following:
* <outputs> = NodeName[<attributes>](<inputs>)
* <blocks>
* Outputs, blocks and attributes are optional.
*/
void IRParser::parseOperator(Block* b) {
// Parse lefthand side.
std::vector<VarWithType> outs;
parseOperatorOutputs(&outs);
// Parse the name and create the corresponding node in the graph.
std::string name = parseOperatorName();
Node* n = g->create(Symbol::fromQualString(name), {}, outs.size());
// Parse attributes and inputs.
parseOperatorInputs(n);
// Register outputs.
int idx = 0;
for (const VarWithType& v : outs) {
vmap[v.name] = n->outputs()[idx++];
vmap[v.name]->setType(v.type);
}
// Insert the new node into block B.
b->appendNode(n);
// If the statement has nested blocks, parse them:
if (L.cur().kind == TK_INDENT) {
parseBlocks(n);
}
L.nextIf(TK_NEWLINE);
}
void IRParser::parseGraphInputs() {
parseList('(', ',', ')', [&] {
VarWithType v = parseVarWithType();
// If the name isn't valid, don't use it
std::string uniq_name = Value::isValidName(v.name) ? v.name : "";
vmap[v.name] = g->addInput(uniq_name);
vmap[v.name]->setType(v.type);
});
}
/** \brief Parse return statement.
*
* It should look like the following:
* return (x : TypeX, y : TypeY, z, ...)
*/
void IRParser::parseReturnOperator() {
L.expect(TK_RETURN);
// Parse output names and types
parseList('(', ',', ')', [&] {
std::string var_name = parseVar();
// Outputs should already be in VMAP, otherwise we're trying to return
// undefined value.
AT_ASSERT(vmap.count(var_name));
g->registerOutput(vmap.at(var_name));
});
// Consume ending tokens
if (L.cur().kind != TK_EOF) {
L.expect(TK_NEWLINE);
L.expect(TK_DEDENT);
}
}
/** \brief Parse entire graph.
*
* It should look like the following:
* graphName (input1, input2, ... inputN):
* op1
* op2
* ...
* opN
* return (output1, output2, ... outputN)
*/
void IRParser::parse() {
// Parse graph definition, it should look like the following:
// graphName (input1, input2, ... inputN):
std::string graphName = L.expect(TK_IDENT).text();
parseGraphInputs();
L.expect(':');
// After the definition we should have a list of statements, parse it:
parseOperatorsList(g->block());
// The last statement should be return, which specifies graph outputs
parseReturnOperator();
}
void IRParser::parseList(
int begin,
int sep,
int end,
const std::function<void()>& callback) {
if (begin != TK_NOTHING) {
L.expect(begin);
}
if (L.cur().kind != end) {
do {
callback();
} while (L.nextIf(sep));
}
if (end != TK_NOTHING) {
L.expect(end);
}
}
} // namespace script
} // namespace jit
} // namespace torch