-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatch_utlities.py
50 lines (45 loc) · 2.05 KB
/
batch_utlities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
from typing import Tuple, List
from groundingdino.util.utils import get_phrases_from_posmap
from groundingdino.util.inference import preprocess_caption
def predict_batch(
model,
images: torch.Tensor,
caption: str,
box_threshold: float,
text_threshold: float,
device: str = "cuda"
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[str]]]:
'''
return:
bboxes_batch: list of tensors of shape (n, 4)
predicts_batch: list of tensors of shape (n,)
phrases_batch: list of list of strings of shape (n,)
n is the number of boxes in one image
'''
caption = preprocess_caption(caption=caption)
model = model.to(device)
image = images.to(device)
with torch.no_grad():
outputs = model(image, captions=[caption for _ in range(len(images))]) # <------- I use the same caption for all the images for my use-case
prediction_logits = outputs["pred_logits"].cpu().sigmoid() # prediction_logits.shape = (num_batch, nq, 256)
prediction_boxes = outputs["pred_boxes"].cpu() # prediction_boxes.shape = (num_batch, nq, 4)
# import ipdb; ipdb.set_trace()
mask = prediction_logits.max(dim=2)[0] > box_threshold # mask: torch.Size([num_batch, 256])
bboxes_batch = []
predicts_batch = []
phrases_batch = [] # list of lists
tokenizer = model.tokenizer
tokenized = tokenizer(caption)
for i in range(prediction_logits.shape[0]):
logits = prediction_logits[i][mask[i]] # logits.shape = (n, 256)
phrases = [
get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer).replace('.', '')
for logit # logit is a tensor of shape (256,) torch.Size([256])
in logits # torch.Size([7, 256])
]
boxes = prediction_boxes[i][mask[i]] # boxes.shape = (n, 4)
phrases_batch.append(phrases)
bboxes_batch.append(boxes)
predicts_batch.append(logits.max(dim=1)[0])
return bboxes_batch, predicts_batch, phrases_batch