-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconfusionMatrix.py
182 lines (156 loc) · 6.92 KB
/
confusionMatrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
import pandas as pd
import os
import numpy as np # Add this line to import numpy
from sklearn.metrics import confusion_matrix, accuracy_score
import seaborn as sns
import matplotlib.pyplot as plt
from model import *
from data_loader import *
from sklearn.metrics import precision_score, recall_score, f1_score
from datetime import datetime
#from sklearn.utils.class_weight import compute_class_weight
#import random
model_name = "HybridCNNLSTM"
ext="CM-comb"
class_names = ["C1", "C2", "C3", "C4", "C5", "C6", "C7", "C8", "C9"]
delta_font_size=-10
fixed_size=5
output_folder1 = r"C:\ML\Plots"
os.makedirs(output_folder1, exist_ok=True)
model_path = r"C:\ML\Models\HybridCNNLSTM.pth"
test_csv_path = r"C:\test.csv"
# Load the checkpoint
checkpoint = torch.load(model_path,weights_only=True)
# Default model parameters
default_params = {
'input_channels': 10001,
'hidden_size': 112,
'output_size': 9,
'num_layers': 8,
'n_head': 2,
'cnn_channels': 24,
'lstm_hidden_size': 12,
'lstm_num_layers': 2,
'batch_size': 64,
'epochs': 200
}
# Check if hyperparameters were saved along with the model
if 'hyperparameters' in checkpoint:
hyperparams = checkpoint['hyperparameters']
print("Saved Hyperparameters:")
for key, value in hyperparams.items():
print(f"{key}: {value}")
else:
print("No hyperparameters were found in the checkpoint.")
# Unpack the updated parameters
input_channels = default_params['input_channels']
hidden_size = default_params['hidden_size']
output_size = default_params['output_size']
num_layers = default_params['num_layers']
n_head = default_params['n_head']
cnn_channels = default_params['cnn_channels']
lstm_hidden_size = default_params['lstm_hidden_size']
lstm_num_layers = default_params['lstm_num_layers']
batch_size = default_params['batch_size']
#epochs = default_params['num_epochs']
epochs = default_params['epochs']
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
checkpoint = torch.load(model_path, map_location=device,weights_only=True)
print(checkpoint.keys()) # Check the keys to see if it matches expected keys
# Function to compute the confusion matrix
def plot_confusion_matrix(true_labels, predicted_labels, class_names):
cm = confusion_matrix(true_labels, predicted_labels)
cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] * 100
accuracy = accuracy_score(true_labels, predicted_labels)
plt.figure(figsize=(10, 8))
ax = sns.heatmap(cm_normalized, annot=True, fmt='.2f', cmap='Greens',
xticklabels=class_names, yticklabels=class_names,
linewidths=0.8, linecolor='black',
cbar_kws={'label': 'Percentage'},
annot_kws={"size": 18 + delta_font_size, "weight": "bold"})
# Increase colorbar label size
cbar = ax.collections[0].colorbar
cbar.ax.set_ylabel('Percentage', fontsize=18 + delta_font_size + fixed_size)
# Increase colorbar tick label size
cbar.ax.tick_params(labelsize=16 + delta_font_size + fixed_size)
cbar = ax.collections[0].colorbar
cbar.ax.set_ylabel('Percentage', fontsize=18 + delta_font_size + fixed_size, fontweight='bold')
plt.title(f'Confusion Matrix (Accuracy: {accuracy * 100:.2f}%)', fontsize=20 + delta_font_size + fixed_size,
fontweight='bold')
plt.xlabel('Predicted', fontsize=18 + delta_font_size + fixed_size, fontweight='bold')
plt.ylabel('True', fontsize=18 + delta_font_size + fixed_size, fontweight='bold')
plt.xticks(fontsize=16 + delta_font_size + fixed_size, rotation=0, fontweight='bold')
plt.yticks(fontsize=16 + delta_font_size + fixed_size, rotation=0, fontweight='bold')
png_file_path = os.path.join(output_folder1, f"{model_name}_{ext}.png")
plt.savefig(png_file_path, format='png', dpi=1500)
plt.show()
model_inference = HybridCNNLSTM(input_channels, cnn_channels, lstm_hidden_size, lstm_num_layers, output_size)
checkpoint = torch.load(model_path, map_location=torch.device('cpu'),weights_only=True)
model_inference.load_state_dict(checkpoint['model_state_dict'])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_inference.to(device)
print(f"Using device: {device}")
test_dataset = CustomDataset(test_csv_path)
test_data_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
model_inference.eval()
true_labels = []
predicted_labels = []
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in test_data_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model_inference(inputs)
print(f"Model output shape: {outputs.shape}") # Print the shape of outputs: (batch_size, numberOfOutputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
true_labels.extend(labels.cpu().numpy())
predicted_labels.extend(predicted.cpu().numpy())
# Calculate and print accuracy
accuracy = 100 * correct / total
print(f"\nOverall Accuracy: {accuracy:.2f}%")
# Print per-class accuracy
print("\nPer-class accuracy:")
cm = confusion_matrix(true_labels, predicted_labels)
for i, class_name in enumerate(class_names):
class_correct = cm[i, i]
class_total = cm[i].sum()
class_acc = class_correct / class_total * 100
print(f"{class_name}: {class_acc:.2f}%")
# Calculate metrics
accuracy = accuracy_score(true_labels, predicted_labels) * 100
precision = precision_score(true_labels, predicted_labels, average='macro', zero_division=0) * 100
recall = recall_score(true_labels, predicted_labels, average='macro', zero_division=0) * 100
f1 = f1_score(true_labels, predicted_labels, average='macro', zero_division=0) * 100
# Print metrics
print(f"\nOverall Accuracy: {accuracy:.2f}%")
print(f"Precision: {precision:.2f}%")
print(f"Recall: {recall:.2f}%")
print(f"F1 Score: {f1:.2f}%")
# Save metrics to text file
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_folder2 = r"C:\ML\Metrics"
os.makedirs(output_folder2, exist_ok=True)
metrics_filename = os.path.join(output_folder2, f"model_metrics_{model_name}_{ext}_{timestamp}.txt")
with open(metrics_filename, 'w') as f:
f.write(f"Model: {model_name}\n")
f.write(f"Detail: {ext}\n")
f.write(f"Number of Classes: {output_size}\n\n")
f.write(f"Overall Accuracy: {accuracy:.2f}%\n")
f.write(f"Precision (macro): {precision:.2f}%\n")
f.write(f"Recall (macro): {recall:.2f}%\n")
f.write(f"F1 Score (macro): {f1:.2f}%\n\n")
# Detailed per-class accuracy
f.write("Per-class Accuracy:\n")
for i, class_name in enumerate(class_names):
class_correct = cm[i, i]
class_total = cm[i].sum()
class_acc = class_correct / class_total * 100
f.write(f"{class_name}: {class_acc:.2f}%\n")
print(f"\nMetrics saved to {metrics_filename}")
plot_confusion_matrix(true_labels, predicted_labels, class_names)