-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcameraAI.py
90 lines (64 loc) · 2.84 KB
/
cameraAI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from ultralytics import YOLO # needed for YOLO model
import cv2 # needed for computer vision processes
import math # needed for math functions
import time # needed for sleep
import pika # needed for RabbitMQ
from threading import Thread # needed for multithreading
class CameraAI:
"""
Class to handle all the camera functions
"""
def __init__(self, cameraSelect=0):
"""
Initialization method
Args:
cameraSelect (int, optional): Select which camera to use. Defaults to 0.
"""
# set up RabbitMQ
self.connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
self.channel = self.connection.channel()
self.channel.queue_declare(queue='cameraInput')
# model stuff
self.model = YOLO("./models/yolov10n.pt", verbose=False)
self.detectedObjects = []
self.cameraSelect = cameraSelect
# start webcam
self.webCam = cv2.VideoCapture(cameraSelect)
#self.webCam.set(3, 640)
#self.webCam.set(4, 480)
self.cameraWidth = 640
self.cameraHeight = 480
self.viewAngle = 90
def comptuerVisionThread(self):
"""
Begins looking for objects in webcam - blocking thread
"""
print("starting computer vision thread")
while True:
#print("test")
self.channel.basic_publish(exchange='', routing_key='cameraOutput', body=str(self.detectedObjects))
self.detectedObjects.clear()
success, img = self.webCam.read()
results = self.model(img, stream=True, conf=0.15, verbose = False)
#test = self.model.predict(self.cameraSelect, save=False, show=True, stream=True, conf=0.15)
for r in results:
#print(f"Detected {len(r)} objects in image")
for box in r.boxes:
# bounding box
x1, y1, x2, y2 = box.xyxy[0]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) # convert to int values
# find the center of the box
xCenter = float(x2 - x1) + x1
yCenter = float(y2 - y1) + y1
#print(str(xCenter))
xAngle = ((xCenter / self.cameraWidth) * self.viewAngle) - (self.viewAngle / 2.0)
xAngle = round(xAngle)
#print(f"Name: {str(r.names[int(box.cls[0])])} Angle: {str(xAngle)}")
self.detectedObjects.append(f"{str(r.names[int(box.cls[0])])}")
#print("")
time.sleep(1) # done to slow things down so as not to bog down the rest of the system.
if __name__ == "__main__":
print("Running Computer Vision system")
cameraAI = CameraAI(cameraSelect=0)
#cameraAI.startListening()
cameraAI.comptuerVisionThread()