forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_lfads.py
223 lines (186 loc) · 7.96 KB
/
plot_lfads.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
import numpy as np
import tensorflow as tf
def _plot_item(W, name, full_name, nspaces):
plt.figure()
if W.shape == ():
print(name, ": ", W)
elif W.shape[0] == 1:
plt.stem(W.T)
plt.title(full_name)
elif W.shape[1] == 1:
plt.stem(W)
plt.title(full_name)
else:
plt.imshow(np.abs(W), interpolation='nearest', cmap='jet');
plt.colorbar()
plt.title(full_name)
def all_plot(d, full_name="", exclude="", nspaces=0):
"""Recursively plot all the LFADS model parameters in the nested
dictionary."""
for k, v in d.iteritems():
this_name = full_name+"/"+k
if isinstance(v, dict):
all_plot(v, full_name=this_name, exclude=exclude, nspaces=nspaces+4)
else:
if exclude == "" or exclude not in this_name:
_plot_item(v, name=k, full_name=full_name+"/"+k, nspaces=nspaces+4)
def plot_priors():
g0s_prior_mean_bxn = train_modelvals['prior_g0_mean']
g0s_prior_var_bxn = train_modelvals['prior_g0_var']
g0s_post_mean_bxn = train_modelvals['posterior_g0_mean']
g0s_post_var_bxn = train_modelvals['posterior_g0_var']
plt.figure(figsize=(10,4), tight_layout=True);
plt.subplot(1,2,1)
plt.hist(g0s_post_mean_bxn.flatten(), bins=20, color='b');
plt.hist(g0s_prior_mean_bxn.flatten(), bins=20, color='g');
plt.title('Histogram of Prior/Posterior Mean Values')
plt.subplot(1,2,2)
plt.hist((g0s_post_var_bxn.flatten()), bins=20, color='b');
plt.hist((g0s_prior_var_bxn.flatten()), bins=20, color='g');
plt.title('Histogram of Prior/Posterior Log Variance Values')
plt.figure(figsize=(10,10), tight_layout=True)
plt.subplot(2,2,1)
plt.imshow(g0s_prior_mean_bxn.T, interpolation='nearest', cmap='jet')
plt.colorbar(fraction=0.025, pad=0.04)
plt.title('Prior g0 means')
plt.subplot(2,2,2)
plt.imshow(g0s_post_mean_bxn.T, interpolation='nearest', cmap='jet')
plt.colorbar(fraction=0.025, pad=0.04)
plt.title('Posterior g0 means');
plt.subplot(2,2,3)
plt.imshow(g0s_prior_var_bxn.T, interpolation='nearest', cmap='jet')
plt.colorbar(fraction=0.025, pad=0.04)
plt.title('Prior g0 variance Values')
plt.subplot(2,2,4)
plt.imshow(g0s_post_var_bxn.T, interpolation='nearest', cmap='jet')
plt.colorbar(fraction=0.025, pad=0.04)
plt.title('Posterior g0 variance Values')
plt.figure(figsize=(10,5))
plt.stem(np.sort(np.log(g0s_post_mean_bxn.std(axis=0))));
plt.title('Log standard deviation of h0 means');
def plot_time_series(vals_bxtxn, bidx=None, n_to_plot=np.inf, scale=1.0,
color='r', title=None):
if bidx is None:
vals_txn = np.mean(vals_bxtxn, axis=0)
else:
vals_txn = vals_bxtxn[bidx,:,:]
T, N = vals_txn.shape
if n_to_plot > N:
n_to_plot = N
plt.plot(vals_txn[:,0:n_to_plot] + scale*np.array(range(n_to_plot)),
color=color, lw=1.0)
plt.axis('tight')
if title:
plt.title(title)
def plot_lfads_timeseries(data_bxtxn, model_vals, ext_input_bxtxi=None,
truth_bxtxn=None, bidx=None, output_dist="poisson",
conversion_factor=1.0, subplot_cidx=0,
col_title=None):
n_to_plot = 10
scale = 1.0
nrows = 7
plt.subplot(nrows,2,1+subplot_cidx)
if output_dist == 'poisson':
rates = means = conversion_factor * model_vals['output_dist_params']
plot_time_series(rates, bidx, n_to_plot=n_to_plot, scale=scale,
title=col_title + " rates (LFADS - red, Truth - black)")
elif output_dist == 'gaussian':
means_vars = model_vals['output_dist_params']
means, vars = np.split(means_vars,2, axis=2) # bxtxn
stds = np.sqrt(vars)
plot_time_series(means, bidx, n_to_plot=n_to_plot, scale=scale,
title=col_title + " means (LFADS - red, Truth - black)")
plot_time_series(means+stds, bidx, n_to_plot=n_to_plot, scale=scale,
color='c')
plot_time_series(means-stds, bidx, n_to_plot=n_to_plot, scale=scale,
color='c')
else:
assert 'NIY'
if truth_bxtxn is not None:
plot_time_series(truth_bxtxn, bidx, n_to_plot=n_to_plot, color='k',
scale=scale)
input_title = ""
if "controller_outputs" in model_vals.keys():
input_title += " Controller Output"
plt.subplot(nrows,2,3+subplot_cidx)
u_t = model_vals['controller_outputs'][0:-1]
plot_time_series(u_t, bidx, n_to_plot=n_to_plot, color='c', scale=1.0,
title=col_title + input_title)
if ext_input_bxtxi is not None:
input_title += " External Input"
plot_time_series(ext_input_bxtxi, n_to_plot=n_to_plot, color='b',
scale=scale, title=col_title + input_title)
plt.subplot(nrows,2,5+subplot_cidx)
plot_time_series(means, bidx,
n_to_plot=n_to_plot, scale=1.0,
title=col_title + " Spikes (LFADS - red, Spikes - black)")
plot_time_series(data_bxtxn, bidx, n_to_plot=n_to_plot, color='k', scale=1.0)
plt.subplot(nrows,2,7+subplot_cidx)
plot_time_series(model_vals['factors'], bidx, n_to_plot=n_to_plot, color='b',
scale=2.0, title=col_title + " Factors")
plt.subplot(nrows,2,9+subplot_cidx)
plot_time_series(model_vals['gen_states'], bidx, n_to_plot=n_to_plot,
color='g', scale=1.0, title=col_title + " Generator State")
if bidx is not None:
data_nxt = data_bxtxn[bidx,:,:].T
params_nxt = model_vals['output_dist_params'][bidx,:,:].T
else:
data_nxt = np.mean(data_bxtxn, axis=0).T
params_nxt = np.mean(model_vals['output_dist_params'], axis=0).T
if output_dist == 'poisson':
means_nxt = params_nxt
elif output_dist == 'gaussian': # (means+vars) x time
means_nxt = np.vsplit(params_nxt,2)[0] # get means
else:
assert "NIY"
plt.subplot(nrows,2,11+subplot_cidx)
plt.imshow(data_nxt, aspect='auto', interpolation='nearest')
plt.title(col_title + ' Data')
plt.subplot(nrows,2,13+subplot_cidx)
plt.imshow(means_nxt, aspect='auto', interpolation='nearest')
plt.title(col_title + ' Means')
def plot_lfads(train_bxtxd, train_model_vals,
train_ext_input_bxtxi=None, train_truth_bxtxd=None,
valid_bxtxd=None, valid_model_vals=None,
valid_ext_input_bxtxi=None, valid_truth_bxtxd=None,
bidx=None, cf=1.0, output_dist='poisson'):
# Plotting
f = plt.figure(figsize=(18,20), tight_layout=True)
plot_lfads_timeseries(train_bxtxd, train_model_vals,
train_ext_input_bxtxi,
truth_bxtxn=train_truth_bxtxd,
conversion_factor=cf, bidx=bidx,
output_dist=output_dist, col_title='Train')
plot_lfads_timeseries(valid_bxtxd, valid_model_vals,
valid_ext_input_bxtxi,
truth_bxtxn=valid_truth_bxtxd,
conversion_factor=cf, bidx=bidx,
output_dist=output_dist,
subplot_cidx=1, col_title='Valid')
# Convert from figure to an numpy array width x height x 3 (last for RGB)
f.canvas.draw()
data = np.fromstring(f.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data_wxhx3 = data.reshape(f.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data_wxhx3