-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunMRV.m
158 lines (140 loc) · 5.92 KB
/
runMRV.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
function [] = runMRV(jobID)
% global simu V Delta Z Xt X Trues filenames B U pilotRun indmat performTest %#ok<*NUSED>
simu = 0; % simulation or real data?
performTest = 1; % perform boostrap testing?
runHPC = 0; if simu == 0; runHPC = 1; end %runHPC=1 for real data
olderversionMATLAB = 0;
arrayID = str2double(num2str(jobID)); %simulation id
filenames = strcat('out',num2str(arrayID),'.mat'); % name of output file
% for simulation
for myloop = 1:(1-runHPC) %equivalant to "if runHPC == 0", easier to fold the code
chs = 1:3; nch = length(chs);
if simu == 1; load(strcat('sdat',num2str(arrayID),'.mat')); else load('datMRV.mat'); end
if olderversionMATLAB == 0; rng('default'); rng(arrayID*10); end
q = size(Z, 2); p = size(X,2); [~, L] = size(B);
% else rand('state', nvar*3); randn('state', nvar*10); end
% construct bootstrap samples
% boot_weightsAll = nan(tot, nboot);
for ch = 1:nch
[matpara, boot_weights] = MedianRegVary(V, Delta, Z, X, B);
if ch==1 %initialize
nsample = size(matpara,1);
tot = nch*nsample;
nboot = size(boot_weights,2);
MCSamples = nan(nch, size(matpara,2), nsample); %used for psrf to check convergence
matparaAll = nan(tot, size(matpara,2));
if performTest==1; boot_weightsAll = nan(nch*nsample, nboot); end
end
MCSamples(ch, :, :) = matpara';
matparaAll((ch-1)*nsample+(1:nsample),:) = matpara;
if performTest==1; boot_weightsAll((ch-1)*nsample+(1:nsample),:) = boot_weights; end
% MsAll((ch-1)*nsample+(1:nsample),:) = Ms;
% PsAll((ch-1)*nsample+(1:nsample),:) = Ps;
% ThetaAll((ch-1)*nsample+(1:nsample),:) = Theta;
end
R = psrf(MCSamples); %disp(R) %check convergence
% disp(mean(matparaAll,1))
%mat = matparaAll(:,1:(L*p));
%save('mat_10.mat','mat','L','p')
pvals1 = []; Ts1 = [];
tot = size(boot_weightsAll,1);
for mytest = 1:performTest
[pvals1, Ts1] = getPval( matparaAll(:,1:(L*p)) , L, p); disp(pvals1)%num2str(pvals1, 4)
boot_weightsAll = exp(boot_weightsAll - repmat(max(boot_weightsAll,[],1), [tot,1]));
end
mBeta = reshape(mean(matparaAll(:,1:(L*p)), 1), [L, p]); % posterior mean
% mBeta = reshape(quantile(matparaAll(:,1:(L*p)), .5, 1), [L, p]);
lBeta = reshape(quantile(matparaAll(:,1:(L*p)), .025, 1), [L, p]);
uBeta = reshape(quantile(matparaAll(:,1:(L*p)), .975, 1), [L, p]);
mGamma = quantile(matparaAll(:,(L*p+1):end), [.5, .025,.975], 1);
mGamma2 = mean(matparaAll(:,(L*p+1):end), 1);
%disp(mGamma')
pvals = []; Ts = zeros(1,p);
for mytest = 1:performTest
denom = sum(boot_weightsAll, 1);
Bmat = nan(L*p, nboot);
for j = 1:(L*p)
Bmat(j,:) = sum(repmat(matparaAll(:,j), [1,nboot]) .* boot_weightsAll, 1)./ denom;
end
mBeta_b1 = reshape(mean(Bmat, 2), [L, p]);
se = reshape(std(Bmat,[], 2), [L, p]);
lBeta_b1 = mBeta_b1 - se*norminv(.975);
uBeta_b1 = mBeta_b1 + se*norminv(.975);
lBeta_b2 = reshape(quantile(Bmat, .025, 2), [L, p]);
uBeta_b2 = reshape(quantile(Bmat, .975, 2), [L, p]);
pvals = nan(1,p);
for j = 1:p
Sigma = zeros(L); b_bar = mean(Bmat((j-1)*L+(1:L),:),2);
for i = 1:nboot
b_jr = Bmat((j-1)*L+(1:L),i) - b_bar;
Sigma = Sigma + b_jr*b_jr';
end
Sigma = Sigma/(nboot-1);
b_hat = mBeta(:,j);
F = [ones(L-1,1), -eye(L-1)];
T = (F*b_hat)' * ((F*Sigma*F')\(F*b_hat)); %chisq-(L-1)
pvals(j) = 1- chi2cdf(T, L-1) ;
Ts(j) = T;
end
%num2str(pvals, 4)
fprintf('case=%d, pvals = %3.4f, %3.4f, %3.4f.\n', [arrayID, pvals])
end
fu = cell(1,p);
plotit = 1;
for j = 1:p
fu{j} = [U'; mBeta(:,j)'*B'; lBeta(:,j)'*B'; uBeta(:,j)'*B']; %; mBeta_b1(:,j)'*B'; lBeta_b1(:,j)'*B'; uBeta_b1(:,j)'*B'; lBeta_b2(:,j)'*B'; uBeta_b2(:,j)'*B'
[~,I] = sort(U);
fu{j} = fu{j}(:,I)';
fu{j} = unique(fu{j}, 'rows');
for myplot = 1:plotit
subplot(1,p,j); h = plot(repmat(fu{j}(:,1),[1,size(fu{j},2)-1]), fu{j}(:,2:end), '.-','MarkerSize',12); %:end
%set(h,'Color',.8*ones(1,3))
%title(Xnams(j))
hold on
switch j
case 1
h = ezplot(@(x) x.^3, [0,1]);
case 2
h = ezplot(@(x) sin(2*pi*x), [0,1]);
case 3
h = ezplot(@(x) 1, [0,1]);
end
title(''); set(h,'Color','k','LineWidth',1)
%set(gca,'XTick',0.1:0.15:1,'XTickLabel',10:15:100); set(gca,'FontSize',15)
hold off
axis tight
end
end
W0 = [.1,.3,.5,.7, .9]; lw = numel(W0);
mse = zeros(p, lw); bias = zeros(p, lw); cp = zeros(p,lw); width = zeros(p,lw);
for j = 1:p
tmp = [mBeta(:,j)'*Trues.B0'; lBeta(:,j)'*Trues.B0'; uBeta(:,j)'*Trues.B0'];
switch j
case 1
tmp1 = W0.^3;
case 2
tmp1 = sin(2*pi*W0);
case 3
tmp1 = 1;
end
bias(j,:) = tmp(1,:)-tmp1;
mse(j,:) = (tmp(1,:)-tmp1).^2;
cp(j,:) = (tmp(2,:)<=tmp1).*(tmp(3,:)>=tmp1);
width(j,:) = tmp(3,:) - tmp(2,:);
end
disp(mse)
save(filenames,'R','mse','bias','cp','width','pvals','pvals1','mBeta','mGamma','mGamma2','Bmat','Ts')
end
% for real data
for myloop = 1:runHPC % run HPC for real data, nvar becomes chain number
rng('default'); rng(arrayID*23)
load('datMRV.mat')
% induse = find(V>0);
% V = V(induse,:); Z = Z(induse,:); Delta = Delta(induse,:);
% default B: knots = c(.1,.3,.5,.7,.9)
% try 20 knots
load('B20.mat'); B = B20;
MedianRegVary(V, Delta, Z, X, B);
end
end
% not run