-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdriftStep.m
186 lines (171 loc) · 7.68 KB
/
driftStep.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
function [x, w, L1] = driftStep(x, w, u, L0, W, plotit, X, Wav, Ywav, T, Gd_prior)
% no need to propose beta under new cluster
% 2015-8-28: note now Ywav and u are T by N matrix, not structured
global N nrmin coords D
x1 = x; w1 = w;
subCenter = w.center(arrayfun(@(idx) ~all(ismember(find(W(idx,:)), w.center)), w.center));
nsize = length(subCenter); % number of centers with >=1 non-center neighbors
target = subCenter(randsample(nsize,1));
ind = find(w.center==target);
group = find(W(target, :)); % neighbors of selected center
group(ismember(group, w.center) | w.labs(group)~=ind) = []; % move to non-center neighbor with the same label
gsize = length(group); % number of non-center neighbors with the same labels
if gsize == 0
warning('something is wrong')
end
% mylen = nan(1,gsize);
% for i0 = 1:gsize
% % i0 = randsample(gsize,1);
% newCenter = group(i0);
% PRatio = log(nsize) + log(gsize);
% ind = find(x.center==target);
% x1.center(ind) = newCenter; % replace
% [x1.labs, x1.bds] = ClusterGen(x1.center, []); %membership may change
% labs2 = 0;
% for i = find(~cellfun(@isempty, x1.bds))
% if any(x1.bds{i}==ind)
% if isempty(x.bds{i})
% labs2 = labs2 + 1;
% end
% end
% end
% mylen(i0) = labs2;
% end
% i0 = find(mylen == max(mylen));
i0 = randsample(gsize,1);
newCenter = group(i0);
PRatio = log(nsize) + log(gsize);
w1.center(ind) = newCenter; % replace
[w1.labs, w1.bds] = ClusterGen(w1.center, []); %membership may change x.labs
% correct boundary with the changing cluster under x1
ratio1 = 0;
labs = zeros(1,N); % =1 indicates corrected old boundary (match in x and x1)
labs2 = zeros(1,N); % =1 indicates new boundary
labs3 = zeros(1,N); % =1 indicates corrected old boundary (dismatch)
for i = find(~cellfun(@isempty, w1.bds))
if any(w1.bds{i}==ind) % boundary correction iff changing center is involved
C = length(w1.bds{i}); % size of choice set
% j0 = w.labs(i); % the current label of i
lik = zeros(1,C);
for j = 1:C
r = w1.bds{i}(j);
% err = Ywav{j0}(:,i0) - Wav*( sum( X(:,:,i).*(Wav'*x1{r}.beta), 2) ) - x1{j0}.u(:,i0) ;
err = Ywav(:,i) - Wav*( sum( X(:,:,i).*(Wav'*x1{r}.beta), 2) ) - u(:,i) ;
lik(j) = -0.5*sum(log(x1{r}.sigma2*x1{r}.g)) - 0.5/x1{r}.sigma2*sum(err.^2./x1{r}.g);
end
loglik = lik;
lik = exp(lik-max(lik)); lik = lik/sum(lik);
i1 = sum(cumsum([0, lik(1:(C-1))]) <= rand(1));
w1.labs(i) = w1.bds{i}(i1);
if ~isempty(w.bds{i}) % boundary under both x and x1
if isempty(setdiff(w.bds{i},w1.bds{i})) && isempty(setdiff(w1.bds{i},w.bds{i}))
% choice set matches. In this case, only need to consider
% those with labels corrected, since no change yields ratio 1
if w1.labs(i) ~= w.labs(i)
% note this will be canceled in L1-L0
ratio1 = ratio1 + loglik(w.bds{i}==w.labs(i)) - loglik(i1) + ...
(Gd_prior==2)*(log(length(w.bds{i})) - log(C));
labs(i) = 1;
end
else % warning('boundaries do not match')
ratio1 = ratio1 - log(lik(i1)) - (Gd_prior==2)*log(C);
labs3(i) = 1;
end
elseif isempty(w.bds{i}) % it is a new boundary
ratio1 = ratio1 - log(lik(i1)) - (Gd_prior==2)*log(C);
labs2(i) = 1;
end
else % keep old label when boundary value does not involve ind, shall not contribute to ratio1
w1.labs(i) = w.labs(i); % note: i may not be a boundary in x
end
end
ratio2 = 0; % proposal density for LB under x
labs0 = zeros(1,N); %indicate if it is a boundary in x
for i = find(~cellfun(@isempty, w.bds)) %calculate the part of proposal ratio involved for x
if isempty(w1.bds{i}) || labs3(i)==1 % compute "new" or dismatched boundary only! difference in boundary correction in ratio1 already
C = length(w.bds{i}); % size of choice set
% j0 = w.labs(i); % the current label of i
% i0 = find( indr{j0} == i); % find the relative index of i in cluster j0
lik = zeros(1,C);
for j = 1:C
r = w.bds{i}(j);
% err = Ywav{j0}(:,i0) - ( Wav*( sum( X(:,:,i).*(Wav'*x1{r}.beta), 2) ) + x1{j0}.u(:,i0) );
err = Ywav(:,i) - ( Wav*( sum( X(:,:,i).*(Wav'*x1{r}.beta), 2) ) + u(:,i) );
lik(j) = -0.5*sum(log(x1{r}.sigma2*x1{r}.g)) - 0.5/x1{r}.sigma2*sum(err.^2./x1{r}.g);
end
lik = exp(lik-max(lik)); lik = lik/sum(lik);
ratio2 = ratio2 + log(lik(w.bds{i}==w.labs(i))) + (Gd_prior==2)*log(C);
labs0(i) = 1;
end
end
PRatio = PRatio + ratio1 + ratio2;
for myplotit = 1:plotit
cmat = jet(w1.d);
figure(2), sz = 15*ones(1,N); sz(w.center) = 50;
scatter(coords(:,1),coords(:,2),sz,cmat(w.labs,:),'filled');
inds = w1.center(ind);
hold on; scatter(coords(inds,1),coords(inds,2),sz(inds)+50,[0,0,0],'filled'); hold off
tmpind = find(w1.labs ~= w.labs);
hold on; scatter(coords(tmpind,1)+.4,coords(tmpind,2),sz(tmpind),cmat(w1.labs(tmpind),:),'filled'); hold off
tmpind = find(labs0 ==1); % old boundary (in x)
hold on; scatter(coords(tmpind,1),coords(tmpind,2),sz(tmpind)+60,cmat(w.labs(tmpind),:),'s'); hold off
tmpind = find(labs==1); % corrected boundary
hold on; scatter(coords(tmpind,1)+.4,coords(tmpind,2),sz(tmpind)+60,cmat(w1.labs(tmpind),:),'d'); hold off
tmpind = find(labs3==1); % new boundary
hold on; scatter(coords(tmpind,1)+.4,coords(tmpind,2),sz(tmpind)+60,cmat(w1.labs(tmpind),:),'k+'); hold off
tmpind = find(labs2==1); % new boundary
% tmpind = find(~cellfun(@isempty, x1.bds));
hold on; scatter(coords(tmpind,1)+.4,coords(tmpind,2),sz(tmpind)+60,'ks'); hold off
end
% x1.labs = labs;
% indr1 = cell(1,w1.d);
% for r = 1:w1.d
% indr1{r} = find(w1.labs == r);
% end
nr = histc(w1.labs, 1:w1.d);
if(min(nr) < nrmin)
x.alpha = -99; x.shift = 0; L1 = L0;
else
% [L1,x1] = getLoglike(x1, 0);
L1 = getLoglike0_r(x1, w1, u, 1:N, Ywav, X, T, Wav, plotit);
subCenter = w1.center(arrayfun(@(idx) ~all(ismember(find(W(idx,:)), w1.center)), w1.center));
Revnsize = length(subCenter);
group = find(W(newCenter, :));
group(ismember(group, w1.center)) = [];
Revgsize = length(group);
PRatio = PRatio - log(Revnsize) - log(Revgsize);
% L1 - L0 should match following:
% tmpind = find(x1.labs ~= x.labs); getLoglike0_r(x1, tmpind) - getLoglike0_r(x, tmpind)
logratio = L1 - L0 + PRatio; alpha = min(0,logratio);
u = log(rand(1)); drift = 0;
if u <= alpha
x = x1; w = w1; drift = 1;
else
L1 = L0;
end
w.alpha = alpha; w.drift = drift;
end
% % post-hoc check
% for i = 1:N
% labs = unique(x.labs(W(i, :)~=0));
% if all( labs ~= x.labs(i)) % i is surrounded by neighbors from other clusters, suspicious
% C = length(labs); % size of choice set
% lik = zeros(1,C);
% for j = 1:C
% r = labs(j);
% err = Ywav(:,i) - ( Wav*( sum( X(:,:,i).*(Wav'*x.beta(:,:,r)), 2) ) + x.u(:,i) );
% lik(j) = -0.5*sum(log(x.sigma2(r)*x.g(:,r))) - 0.5/x.sigma2(r)*sum(err.^2./x.g(:,r));
% end
% lik = exp(lik-max(lik)); lik = lik/sum(lik);
% i1 = sum(cumsum([0, lik(1:(C-1))]) <= rand(1));
% x.labs(i) = labs(i1);
% end
% end
nr = histc(w.labs, 1:w.d);
if any(nr ==0)% this only happens when a new cluster has all points as boundary, and corrected to other clusters
warning('some cluster vanishes in drift step')
ind = find(nr == 0);
w.center(ind) = []; [w.labs, w.bds] = ClusterGen(w.center, []); w.d = length(w.center);
x(ind) = [];
end
end