-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunkml.R
61 lines (41 loc) · 1.32 KB
/
runkml.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
repl <- as.numeric(commandArgs(TRUE))
require(R.matlab)
require(kmlcov)
source('myglmClust.R') # modified the output format from their function
o <- readMat('datLM.mat')
Y <- o$Y
nTime <- nrow(Y)
nLoc <- ncol(Y)
nVar <- dim(o$X)[2]
# now try our data
dat <- data.frame(Y=as.vector(o$Y))
dat$time <- rep(1:nTime, nLoc)
dat$site <- rep(1:nLoc, each=nTime)
tmp <- numeric(); for(j in 1:nVar) tmp <- cbind(tmp, as.vector(o$X[,j,]))
dat <- cbind(dat, tmp)
names(dat) <-c('Y','time','site',paste0('X',1:nVar))
dat$time2 <- dat$time^2
dat$time3 <- dat$time^3
K <- repl
set.seed(repl*10)
ptm <- proc.time()[3]
m <- myglmClust(formula = Y ~ clust(time+time2+time3+X1+X2+X3+X4+X5+X6+X7+X8+X9+X10+X11+X12+X13+X14+X15), data = dat, ident = 'site', timeVar = 'time', nClust = K, max_itr=5000)
cputime <- as.numeric(proc.time()[3]-ptm)/60
cat('\nCPUtime', round(cputime,3), 'minutes: completed!','\n')
lab <- m$partition
cri <- m$criteria
save(file=paste0('out',repl), lab, cri, cputime)
combinIt <- FALSE
if(combinIt){
Ks <- 2:20; cris <- numeric()
for(repl in Ks){
load(paste0('out',repl))
cris <- rbind(cris, cri)
}
mat <- data.frame(cbind(Ks, cris))
y <- diff(mat$BIC)
kopt <- mat$Ks[which(y>0)[1]] #optimal K
load(paste0('out',kopt))
save(file='sout_kml', mat, lab, kopt) #lab=label under optimal partition
}
# not run