-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtest_maxpooling.cpp
52 lines (45 loc) · 1.57 KB
/
test_maxpooling.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
//
// Created by fss on 23-1-1.
//
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "ops/op.hpp"
#include "ops/maxpooling_op.hpp"
#include "layer/layer.hpp"
#include "factory/layer_factory.hpp"
TEST(test_layer, forward_maxpooling1) {
using namespace kuiper_infer;
uint32_t stride_h = 1;
uint32_t stride_w = 1;
uint32_t padding_h = 0;
uint32_t padding_w = 0;
uint32_t pooling_h = 2;
uint32_t pooling_w = 2;
std::shared_ptr<Operator>
max_op = std::make_shared<MaxPoolingOp>(pooling_h, pooling_w, stride_h, stride_w, padding_h, padding_w);
std::shared_ptr<Layer> max_layer = LayerRegisterer::CreateLayer(max_op);
CHECK(max_layer != nullptr);
arma::fmat input_data = "0 1 2 ;"
"3 4 5 ;"
"6 7 8 ;";
std::shared_ptr<Tensor<float>> input = std::make_shared<Tensor<float>>(2, input_data.n_rows, input_data.n_cols);
input->at(0) = input_data;
input->at(1) = input_data;
std::vector<std::shared_ptr<Tensor<float>>> inputs;
std::vector<std::shared_ptr<Tensor<float>>> outputs;
inputs.push_back(input);
max_layer->Forwards(inputs, outputs);
ASSERT_EQ(outputs.size(), 1);
const auto &output = outputs.at(0);
LOG(INFO) << "\n" << output->data();
ASSERT_EQ(output->rows(), 2);
ASSERT_EQ(output->cols(), 2);
ASSERT_EQ(output->at(0, 0, 0), 4);
ASSERT_EQ(output->at(0, 0, 1), 5);
ASSERT_EQ(output->at(0, 1, 0), 7);
ASSERT_EQ(output->at(0, 1, 1), 8);
ASSERT_EQ(output->at(1, 0, 0), 4);
ASSERT_EQ(output->at(1, 0, 1), 5);
ASSERT_EQ(output->at(1, 1, 0), 7);
ASSERT_EQ(output->at(1, 1, 1), 8);
}