-
Notifications
You must be signed in to change notification settings - Fork 78
/
inference_demo.py
341 lines (280 loc) · 11.8 KB
/
inference_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import glob
import torch
import hydra
from tqdm import tqdm
import os
import os.path as osp
import numpy as np
import natsort
from loguru import logger
from torch.utils.data import DataLoader
from src.utils import data_utils, path_utils, eval_utils, vis_utils
from src.utils.model_io import load_network
from src.local_feature_2D_detector import LocalFeatureObjectDetector
from src.tracker.ba_tracker import BATracker
from pytorch_lightning import seed_everything
seed_everything(12345)
def get_default_paths(cfg, data_root, data_dir, sfm_model_dir):
anno_dir = osp.join(
sfm_model_dir, f"outputs_{cfg.network.detection}_{cfg.network.matching}", "anno"
)
avg_anno_3d_path = osp.join(anno_dir, "anno_3d_average.npz")
clt_anno_3d_path = osp.join(anno_dir, "anno_3d_collect.npz")
idxs_path = osp.join(anno_dir, "idxs.npy")
sfm_ws_dir = osp.join(
sfm_model_dir,
f"outputs_{cfg.network.detection}_{cfg.network.matching}",
"sfm_ws",
"model",
)
img_lists = []
color_dir = osp.join(data_dir, "color_full")
img_lists += glob.glob(color_dir + "/*.png", recursive=True)
img_lists = natsort.natsorted(img_lists)
# Visualize detector:
vis_detector_dir = osp.join(data_dir, "detector_vis")
if osp.exists(vis_detector_dir):
os.system(f"rm -rf {vis_detector_dir}")
os.makedirs(vis_detector_dir, exist_ok=True)
det_box_vis_video_path = osp.join(data_dir, "det_box.mp4")
# Visualize pose:
vis_box_dir = osp.join(data_dir, "pred_vis")
if osp.exists(vis_box_dir):
os.system(f"rm -rf {vis_box_dir}")
os.makedirs(vis_box_dir, exist_ok=True)
demo_video_path = osp.join(data_dir, "demo_video.mp4")
intrin_full_path = osp.join(data_dir, "intrinsics.txt")
paths = {
"data_root": data_root,
"data_dir": data_dir,
"sfm_model_dir": sfm_model_dir,
"sfm_ws_dir": sfm_ws_dir,
"avg_anno_3d_path": avg_anno_3d_path,
"clt_anno_3d_path": clt_anno_3d_path,
"idxs_path": idxs_path,
"intrin_full_path": intrin_full_path,
"vis_box_dir": vis_box_dir,
"vis_detector_dir": vis_detector_dir,
"det_box_vis_video_path": det_box_vis_video_path,
"demo_video_path": demo_video_path,
}
return img_lists, paths
def load_model(cfg):
"""Load model"""
def load_matching_model(model_path):
"""Load onepose model"""
from src.models.GATsSPG_lightning_model import LitModelGATsSPG
trained_model = LitModelGATsSPG.load_from_checkpoint(checkpoint_path=model_path)
trained_model.cuda()
trained_model.eval()
return trained_model
def load_extractor_model(cfg, model_path):
"""Load extractor model(SuperPoint)"""
from src.models.extractors.SuperPoint.superpoint import SuperPoint
from src.sfm.extract_features import confs
extractor_model = SuperPoint(confs[cfg.network.detection]["conf"])
extractor_model.cuda()
extractor_model.eval()
load_network(extractor_model, model_path, force=True)
return extractor_model
matching_model = load_matching_model(cfg.model.onepose_model_path)
extractor_model = load_extractor_model(cfg, cfg.model.extractor_model_path)
return matching_model, extractor_model
def load_2D_matching_model(cfg):
def load_2D_matcher(cfg):
from src.models.matchers.SuperGlue.superglue import SuperGlue
from src.sfm.match_features import confs
match_model = SuperGlue(confs[cfg.network.matching]["conf"])
match_model.eval()
load_network(match_model, cfg.model.match_model_path)
return match_model
matcher = load_2D_matcher(cfg)
return matcher
def pack_data(avg_descriptors3d, clt_descriptors, keypoints3d, detection, image_size):
"""Prepare data for OnePose inference"""
keypoints2d = torch.Tensor(detection["keypoints"])
descriptors2d = torch.Tensor(detection["descriptors"])
inp_data = {
"keypoints2d": keypoints2d[None].cuda(), # [1, n1, 2]
"keypoints3d": keypoints3d[None].cuda(), # [1, n2, 3]
"descriptors2d_query": descriptors2d[None].cuda(), # [1, dim, n1]
"descriptors3d_db": avg_descriptors3d[None].cuda(), # [1, dim, n2]
"descriptors2d_db": clt_descriptors[None].cuda(), # [1, dim, n2*num_leaf]
"image_size": image_size,
}
return inp_data
def inference_core(cfg, data_root, seq_dir, sfm_model_dir):
"""Inference & visualize"""
from src.datasets.normalized_dataset import NormalizedDataset
from src.sfm.extract_features import confs
if cfg.use_tracking:
logger.warning("The tracking module is under development. "
"Running OnePose inference without tracking instead.")
tracker = BATracker(cfg)
track_interval = 5
else:
logger.info("Running OnePose inference without tracking")
# Load models and prepare data:
matching_model, extractor_model = load_model(cfg)
matching_2D_model = load_2D_matching_model(cfg)
img_lists, paths = get_default_paths(cfg, data_root, seq_dir, sfm_model_dir)
# sort images
im_ids = [int(osp.basename(i).replace('.png', '')) for i in img_lists]
im_ids.sort()
img_lists = [osp.join(osp.dirname(img_lists[0]), f'{im_id}.png') for im_id in im_ids]
K, _ = data_utils.get_K(paths["intrin_full_path"])
box3d_path = path_utils.get_3d_box_path(data_root)
bbox3d = np.loadtxt(box3d_path)
local_feature_obj_detector = LocalFeatureObjectDetector(
extractor_model,
matching_2D_model,
sfm_ws_dir=paths["sfm_ws_dir"],
output_results=False,
detect_save_dir=paths["vis_detector_dir"],
)
dataset = NormalizedDataset(
img_lists, confs[cfg.network.detection]["preprocessing"]
)
loader = DataLoader(dataset, num_workers=1)
# Prepare 3D features:
num_leaf = cfg.num_leaf
avg_data = np.load(paths["avg_anno_3d_path"])
clt_data = np.load(paths["clt_anno_3d_path"])
idxs = np.load(paths["idxs_path"])
keypoints3d = torch.Tensor(clt_data["keypoints3d"]).cuda()
num_3d = keypoints3d.shape[0]
# load average 3D features:
avg_descriptors3d, _ = data_utils.pad_features3d_random(
avg_data["descriptors3d"], avg_data["scores3d"], num_3d
)
# load corresponding 2D features of each 3D point:
clt_descriptors, _ = data_utils.build_features3d_leaves(
clt_data["descriptors3d"], clt_data["scores3d"], idxs, num_3d, num_leaf
)
pred_poses = {} # {id:[pred_pose, inliers]}
for id, data in enumerate(tqdm(loader)):
with torch.no_grad():
img_path = data["path"][0]
inp = data["image"].cuda()
# Detect object:
if id == 0:
# Detect object by 2D local feature matching for the first frame:
bbox, inp_crop, K_crop = local_feature_obj_detector.detect(inp, img_path, K)
else:
# Use 3D bbox and previous frame's pose to yield current frame 2D bbox:
previous_frame_pose, inliers = pred_poses[id - 1]
if len(inliers) < 8:
# Consider previous pose estimation failed, reuse local feature object detector:
bbox, inp_crop, K_crop = local_feature_obj_detector.detect(
inp, img_path, K
)
else:
(
bbox,
inp_crop,
K_crop,
) = local_feature_obj_detector.previous_pose_detect(
img_path, K, previous_frame_pose, bbox3d
)
# Detect query image(cropped) keypoints and extract descriptors:
pred_detection = extractor_model(inp_crop)
pred_detection = {k: v[0].cpu().numpy() for k, v in pred_detection.items()}
# 2D-3D matching by GATsSPG:
inp_data = pack_data(
avg_descriptors3d,
clt_descriptors,
keypoints3d,
pred_detection,
data["size"],
)
pred, _ = matching_model(inp_data)
matches = pred["matches0"].detach().cpu().numpy()
valid = matches > -1
kpts2d = pred_detection["keypoints"]
kpts3d = inp_data["keypoints3d"][0].detach().cpu().numpy()
confidence = pred["matching_scores0"].detach().cpu().numpy()
mkpts2d, mkpts3d, mconf = (
kpts2d[valid],
kpts3d[matches[valid]],
confidence[valid],
)
# Estimate object pose by 2D-3D correspondences:
pose_pred, pose_pred_homo, inliers = eval_utils.ransac_PnP(
K_crop, mkpts2d, mkpts3d, scale=1000
)
# Store previous estimated poses:
pred_poses[id] = [pose_pred, inliers]
image_crop = np.asarray((inp_crop * 255).squeeze().cpu().numpy(), dtype=np.uint8)
if cfg.use_tracking:
frame_dict = {
'im_path': image_crop,
'kpt_pred': pred_detection,
'pose_pred': pose_pred_homo,
'pose_gt': pose_pred_homo,
'K': K_crop,
'K_crop': K_crop,
'data': data
}
use_update = id % track_interval == 0
if use_update:
mkpts3d_db_inlier = mkpts3d[inliers.flatten()]
mkpts2d_q_inlier = mkpts2d[inliers.flatten()]
n_kpt = kpts2d.shape[0]
valid_query_id = np.where(valid != False)[0][inliers.flatten()]
kpts3d_full = np.ones([n_kpt, 3]) * 10086
kpts3d_full[valid_query_id] = mkpts3d_db_inlier
kpt3d_ids = matches[valid][inliers.flatten()]
kf_dict = {
'im_path': image_crop,
'kpt_pred': pred_detection,
'valid_mask': valid,
'mkpts2d': mkpts2d_q_inlier,
'mkpts3d': mkpts3d_db_inlier,
'kpt3d_full': kpts3d_full,
'inliers': inliers,
'kpt3d_ids': kpt3d_ids,
'valid_query_id': valid_query_id,
'pose_pred': pose_pred_homo,
'pose_gt': pose_pred_homo,
'K': K_crop
}
need_update = not tracker.update_kf(kf_dict)
if id == 0:
tracker.add_kf(kf_dict)
id += 1
pose_opt = pose_pred_homo
else:
pose_init, pose_opt, ba_log = tracker.track(frame_dict, auto_mode=False)
else:
pose_opt = pose_pred_homo
# Visualize:
vis_utils.save_demo_image(
pose_opt,
K,
image_path=img_path,
box3d_path=box3d_path,
draw_box=len(inliers) > 6,
save_path=osp.join(paths["vis_box_dir"], f"{id}.jpg"),
)
# Output video to visualize estimated poses:
vis_utils.make_video(paths["vis_box_dir"], paths["demo_video_path"])
def inference(cfg):
data_dirs = cfg.input.data_dirs
sfm_model_dirs = cfg.input.sfm_model_dirs
if isinstance(data_dirs, str) and isinstance(sfm_model_dirs, str):
data_dirs = [data_dirs]
sfm_model_dirs = [sfm_model_dirs]
for data_dir, sfm_model_dir in tqdm(
zip(data_dirs, sfm_model_dirs), total=len(data_dirs)
):
splits = data_dir.split(" ")
data_root = splits[0]
for seq_name in splits[1:]:
seq_dir = osp.join(data_root, seq_name)
logger.info(f"Eval {seq_dir}")
inference_core(cfg, data_root, seq_dir, sfm_model_dir)
@hydra.main(config_path="configs/", config_name="config.yaml")
def main(cfg):
globals()[cfg.type](cfg)
if __name__ == "__main__":
main()