-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_base.py
428 lines (341 loc) · 13.3 KB
/
model_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import logging
import os, sys
import inspect
import time
from queue import Queue
from threading import Lock, Thread
import tensorflow as tf
import pandas as pd
import pickle
from functools import lru_cache
from typing import List, AnyStr
from abc import ABCMeta
from update_model import UpdateModel
from data_iter import DataGenerator
def _init():
def init_logger():
global _logger
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s : %(message)s')
_logger = logging.getLogger('model')
init_logger()
def init_model_nums_select():
global _Model_NUMS_SELECT
_Model_NUMS_SELECT = [0, 1, 2, 3, 4]
init_model_nums_select()
def init_base_dir_path():
global _BASE_DIR_PATH
_BASE_DIR_PATH = os.path.dirname(os.path.abspath(__file__))
init_base_dir_path()
def init_lr():
global _MIN_LR, _INIT_LR
_MIN_LR = 1 / 10 ** 12
_INIT_LR = 1 / 10 ** 5
init_lr()
def init_trans():
global _NUM_PORT, _IP_PORT, _PORT_IP, _IP_PWD, \
_ADDRESS, _STATE
_NUM_PORT = {1: 8501, 2: 8502, 3: 8503, 4: 8504}
_IP_PORT = {
"10.19.90.95": [8501, 8502],
"10.19.160.33": [8501, 8502],
"10.19.117.187": [8503, 8504],
"10.19.128.25": [8503, 8504]
}
_PORT_IP = {}
for key, value in _IP_PORT.items():
for port in value:
target = _PORT_IP.get(port, set())
target.add(key)
_PORT_IP[port] = target.copy()
# better to move to config to void leak
_IP_PWD = {
"10.19.90.95": "Knowbox.cn",
"10.19.160.33": "Knowbox.cn",
"10.19.117.187": "root!@#.com",
"10.19.128.25": "root!@#.com",
}
_TARGET = [
"[email protected]:/data/midas-model",
"[email protected]:/data/midas-model",
"[email protected]:/data/midas-model",
"[email protected]:/data/midas-model",
]
_STATE = """sshpass -p {pwd} scp -r {source} {target}"""
init_trans()
_init()
def _num2port(model_num: int):
return _NUM_PORT[model_num]
def _ip2port(ip: str, default=None):
return _IP_PORT.get(ip, default)
def _port2ip(port: int, default=None):
return _PORT_IP.get(port, default)
def _ip2pwd(ip: str, default=None):
return _IP_PWD.get(ip, default)
def _trans_model(model_num: int, source: str,
version: int, target: List[AnyStr] = None):
def parse2list(item):
if not isinstance(item, (list, tuple)):
item = [item]
return item
@lru_cache(maxsize=20)
def parse_ip(address):
ip = address.split(":")[0].split("@")[1]
return ip
@lru_cache(maxsize=20)
def check_dir(ip, pwd, dir):
import paramiko
logging.getLogger("paramiko.transport").setLevel(logging.ERROR)
# logging.getLogger("paramiko").setLevel(logging.DEBUG)
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect(ip, 22, 'ubuntu', pwd)
cmd = "mkdir -p %s" % (dir.split(":")[1])
ssh.exec_command(cmd)
ssh.close()
port = _num2port(model_num)
port_list = parse2list(port)
target = target or _TARGET.copy()
target_list = parse2list(target)
for port in port_list:
ips = _port2ip(port, set())
if len(ips) == 0:
continue
for target in target_list:
if parse_ip(target) not in ips:
continue
real_source = os.path.join(source, str(version))
real_target = os.path.join(target, str(port))
# TODO: use thread???
pwd = _ip2pwd(parse_ip(target), None)
if pwd is None:
continue
check_dir(parse_ip(target), pwd, real_target)
os.system(_STATE.format(pwd=pwd,
source=real_source,
target=real_target))
class Model_Exception(Exception):
pass
class Model_Meta(ABCMeta):
def __new__(cls, name, bases, attrs):
if not hasattr(attrs, "MODEL_NUM"):
if not name.startswith("Model_"):
raise Model_Exception("the name of this cls must start with Model_, "
"but \"%s\" given!" % (name))
model_num = name.split("Model_")[1]
if model_num in ["", "Base"]:
model_num = 0
else:
model_num = getattr(attrs, "MODEL_NUM")
try:
model_num = int(model_num)
except:
raise Model_Exception("MODEL_NUM must be set and trans to int, "
"but \"%s\" given!" % (name))
if model_num not in _Model_NUMS_SELECT:
raise Model_Exception("MODEL_NUM must in %s, but %s given!" % (
_Model_NUMS_SELECT, model_num))
if model_num == 0 and "Model_Base" != name:
_logger.warning("MODEL_NUM set to be 0, nothing will exec!")
attrs["MODEL_NUM"] = model_num
attrs["CLASS_NAME"] = name
return super(Model_Meta, cls).__new__(cls, name, bases, attrs)
class Model_Base(object, metaclass=Model_Meta):
_QUEUE = None
_LOCK = Lock()
_INSTANCE_LOCK = Lock()
def __new__(cls, *args, **kwargs):
# just to make sure for Model_Base can't be instantiate
if cls.CLASS_NAME == "Model_Base":
raise Model_Exception("Can't instantiate abstract class Model_Base!")
# Single instance
if not hasattr(cls, "_INSTANCE"):
with cls._INSTANCE_LOCK:
if not hasattr(cls, "_INSTANCE"):
cls._INSTANCE = super(Model_Base, cls).__new__(cls, )
return cls._INSTANCE
def __init__(self, model, data_iter, handle,
prepare_data, train_data_cate, *, base_dir_path=None,
save_iter=500, print_iter=100,
lr_iter=1000, lr=0.001,
restart_sum=1000, break_sum=8):
assert isinstance(model, UpdateModel), "the model must instance of %s" % (UpdateModel)
assert isinstance(data_iter, DataGenerator), "the data_iter must instance of %s" % (DataGenerator)
assert callable(handle), "handle must callable!"
assert callable(prepare_data), "prepare_data must callable!"
self.model = model
self.data_iter = data_iter
self.handle, self.prepare_data = handle, prepare_data
self.train_data_cate = train_data_cate
self.base_dir_path = base_dir_path or _BASE_DIR_PATH
self.path = os.path.join(self.base_dir_path, self.CLASS_NAME.lower())
self.model_path = os.path.join(self.path, "model")
self.model_serving_path = os.path.join(self.path, "serving")
os.makedirs(self.model_path, exist_ok=True)
os.makedirs(self.model_serving_path, exist_ok=True)
self.save_iter, self.print_iter = save_iter, print_iter
self.lr_iter, self.lr = lr_iter, lr
self.restart_sum, self.break_sum = restart_sum, break_sum
def produce(self, kwargs):
def inner():
assert isinstance(kwargs, dict)
try:
with self._LOCK:
self._QUEUE = Queue(800000)
with self.data_iter as d:
default = inspect.signature(d.get_data).parameters.get("batch_size").default
default = kwargs.get("batch_size", None) or default
for i in d.get_data(batch_size=default, model_num=self.MODEL_NUM):
self._QUEUE.put(i)
self._QUEUE.put("done")
except:
pass
p = Thread(target=inner, args=(), )
p.setDaemon(True)
return p
def get_max_model_index(self):
num = -1
for i in os.listdir(self.model_path):
o = i.split(".")[0]
try:
a = int(o.split("_")[1])
if a > num:
num = a
except:
pass
return num
def get_max_serving_index(self):
num = -1
for i in os.listdir(self.model_serving_path):
o = i.split(".")[0]
try:
a = int(o)
if a > num:
num = a
except:
pass
return num
def get_lr(self):
lr_path = os.path.join(self.path, "lr.index")
if os.path.exists(lr_path):
with open(lr_path, "rb") as f:
return pickle.load(f)
return None
def update_lr(self, lr):
lr_path = os.path.join(self.path, "lr.index")
if os.path.exists(lr_path):
os.remove(lr_path)
with open(lr_path, "wb") as f:
pickle.dump(lr, f)
def trans_model(self, version, target=None):
_trans_model(self.MODEL_NUM, self.model_serving_path, version,
target=target)
def run(self, produce_kwargs=None, trans_target=None):
if self.MODEL_NUM == 0:
return
produce_kwargs = produce_kwargs or {}
restart_cnt, break_cnt = 1, 1
loss_sum, accuracy_sum = 0.0, 0.0
lr = self.get_lr() or self.lr
if lr < _MIN_LR:
lr = _INIT_LR
with tf.Session(graph=self.model.graph) as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
version = self.get_max_serving_index()
if version == -1:
version = 0
version += 1
iiter = self.get_max_model_index()
if iiter != -1:
self.model.restore(sess, os.path.join(self.model_path, "ckpt_") + str(iiter))
if iiter == -1:
iiter = 0
self.produce(kwargs=produce_kwargs).start()
time.sleep(0.5)
while True:
try:
item = self._QUEUE.get(30)
if item == "done":
time.sleep(10)
print("restart")
if restart_cnt > self.restart_sum:
break
restart_cnt += 1
self.produce(kwargs=produce_kwargs).start()
time.sleep(0.5)
continue
except:
time.sleep(10)
continue
data = pd.DataFrame.from_dict(item)
try:
feature, target = self.handle(data)
prepared_data = self.prepare_data(feature, target)
if len(self.train_data_cate) != len(prepared_data):
_logger.error("train_data_cate'length must equal to "
"the length of prepare_data's returns! ")
sys.exit(1)
train_data = {k: v for k, v in zip(self.train_data_cate, prepared_data)}
train_data["lr"] = lr
loss, acc, = self.model.train_with_dict(sess, train_data)
iiter += 1
loss_sum += loss
accuracy_sum += acc
except Exception as e:
_logger.error(e)
continue
if iiter % self.print_iter == 0:
print(iiter, loss_sum, accuracy_sum)
if iiter % self.save_iter == 0:
self.model.save(sess, os.path.join(self.model_path, "ckpt_") + str(iiter))
self.model.save_serving_model(sess, self.model_serving_path,
version=version)
print("start transport the model! ")
self.trans_model(version, target=trans_target)
version += 1
loss_sum = 0.0
accuracy_sum = 0.0
if break_cnt >= self.break_sum:
break
break_cnt += 1
if iiter % self.lr_iter == 0:
lr *= 0.5
self.update_lr(lr)
def parse_argv(argv):
filter_str = """RowFilter (=, 'substring:{}')"""
import datetime
if len(argv) == 1:
sys.exit(1)
# command:
# 1、hbase_fliter_str
# 2、hbase_fliter_str day
# 3、hbase_fliter_str day,day,day
# 4、hbase_fliter_str day~day
cmd = argv[1:]
assert 1 <= len(cmd) <= 2
if len(cmd) == 1 or len(cmd[1]) == 0:
day = datetime.datetime.today()
yes = day + datetime.timedelta(days=-1)
if len(cmd) == 1:
cmd.append(yes.strftime("%Y-%m-%d"))
else:
cmd[1] = yes.strftime("%Y-%m-%d")
if "~" in cmd[1]:
days = cmd[1].split("~").sort()
assert len(days) == 2
begin, end = days[0], days[1]
days = []
begin = datetime.datetime.strptime(begin, "%Y-%m-%d")
end = datetime.datetime.strptime(end, "%Y-%m-%d")
for i in range((end - begin).days + 1):
days.append((begin + datetime.timedelta(days=i)).strftime("%Y-%m-%d"))
elif "," in cmd[1]:
days = cmd[1].split(",").sort()
else:
days = [cmd[1]]
if len(cmd[0]) == 0:
cmd[0] = filter_str
return cmd[0], days
if __name__ == "__main__":
pass